Skip to content

Theprofitplatform/AgentZero

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AgentZero - Advanced Multi-Agent System with Hive Intelligence

Overview

AgentZero is a sophisticated multi-agent system that leverages hive intelligence for collaborative problem-solving. It features specialized agents coordinated through a central hive system, enabling complex task execution through distributed intelligence.

Features

🧠 Core Capabilities

  • Hive Coordination: Central orchestrator managing multi-agent collaboration
  • Specialized Agents: Purpose-built agents for specific domains
  • Distributed Intelligence: Agents work together to solve complex problems
  • Adaptive Learning: Agents learn from experience and improve over time
  • Scalable Architecture: Easily add more agents as needed

πŸ€– Agent Types

  1. Research Agent

    • Web searching and data gathering
    • Content extraction and analysis
    • Fact verification and validation
    • Sentiment analysis
    • Knowledge graph construction
  2. Code Agent

    • Code generation in multiple languages
    • Code analysis and optimization
    • Debugging and error fixing
    • Refactoring suggestions
    • Test generation
  3. Planning Agent (Coming Soon)

    • Strategic task decomposition
    • Resource allocation
    • Timeline management
    • Dependency resolution
  4. Execution Agent (Coming Soon)

    • Task execution monitoring
    • System operations
    • Integration management

Quick Start

Prerequisites

  • Python 3.9+
  • Docker & Docker Compose (optional)
  • Redis (for message queue)
  • PostgreSQL (for persistent storage)

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/agentzero.git
cd agentzero
  1. Install dependencies:
pip install -r requirements.txt
  1. Run the system:
python main.py

Docker Deployment

docker-compose up -d

This will start:

  • Hive Coordinator
  • Multiple Research Agents
  • Multiple Code Agents
  • Redis for messaging
  • PostgreSQL for storage
  • Prometheus & Grafana for monitoring

Usage

Interactive Mode

python main.py --mode interactive

Commands:

  • research <query> - Research a topic
  • code <description> - Generate code
  • analyze <file> - Analyze code file
  • status - Show system status
  • quit - Exit

Batch Mode

python main.py --mode batch --tasks tasks.txt

Python API

from agentzero import AgentZeroSystem
from src.core.agent import Task, Priority

# Initialize system
system = AgentZeroSystem()
await system.initialize()

# Submit a research task
task_id = await system.submit_task(
    "Research latest developments in quantum computing",
    task_type="research"
)

# Submit a code generation task
task_id = await system.submit_task(
    "Generate a REST API for user management",
    task_type="code_generation"
)

# Get system status
status = await system.get_status()
print(f"Active tasks: {status['hive']['active_tasks']}")

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           Hive Coordinator              β”‚
β”‚  β€’ Task Distribution                    β”‚
β”‚  β€’ Agent Management                     β”‚
β”‚  β€’ Resource Optimization                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
             β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                 β”‚        β”‚        β”‚
β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β” β”Œβ”€β”€β–Όβ”€β”€β”€β” β”Œβ”€β”€β–Όβ”€β”€β”€β”
β”‚Researchβ”‚      β”‚  Code   β”‚ β”‚Plan  β”‚ β”‚Exec  β”‚
β”‚ Agent  β”‚      β”‚  Agent  β”‚ β”‚Agent β”‚ β”‚Agent β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜

Task Distribution Strategies

  1. Capability-Based: Match tasks to agents with required skills
  2. Load-Balanced: Distribute evenly across available agents
  3. Auction-Based: Agents bid for tasks they can handle
  4. Priority-Based: Consider agent performance metrics
  5. Round-Robin: Simple sequential distribution

Configuration

Environment Variables

# Hive Configuration
HIVE_ID=main-hive
DISTRIBUTION_STRATEGY=capability_based

# Agent Configuration
RESEARCH_AGENTS=2
CODE_AGENTS=2

# Database
POSTGRES_URL=postgresql://user:pass@localhost/agentzero
REDIS_URL=redis://localhost:6379

# Monitoring
LOG_LEVEL=INFO

Config File

# config/agentzero.yml
hive:
  distribution_strategy: capability_based
  max_tasks_per_agent: 5
  heartbeat_interval: 30

agents:
  research:
    count: 2
    max_depth: 3
    max_pages: 50
  code:
    count: 2
    languages:
      - python
      - javascript
      - typescript

Monitoring

Access Grafana dashboard at http://localhost:3000 (default: admin/admin)

Key metrics:

  • Agent utilization
  • Task completion rate
  • Average task duration
  • Hive efficiency score
  • Memory usage per agent

Development

Project Structure

agentzero/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ core/           # Core agent framework
β”‚   β”œβ”€β”€ hive/           # Hive coordination system
β”‚   β”œβ”€β”€ agents/         # Specialized agent implementations
β”‚   β”œβ”€β”€ tools/          # Agent tools and utilities
β”‚   β”œβ”€β”€ memory/         # Memory and learning systems
β”‚   └── communication/  # Inter-agent communication
β”œβ”€β”€ tests/              # Test suite
β”œβ”€β”€ config/             # Configuration files
β”œβ”€β”€ docker/             # Docker configurations
└── docs/               # Documentation

Creating Custom Agents

from src.core.agent import BaseAgent, Task

class CustomAgent(BaseAgent):
    async def execute(self, task: Task):
        # Implement task execution logic
        result = await self.process_custom_task(task)
        return result

Running Tests

pytest tests/
pytest tests/ --cov=src --cov-report=html

Roadmap

  • Core agent framework
  • Hive coordinator
  • Research agent
  • Code agent
  • Planning agent
  • Execution agent
  • Web UI dashboard
  • REST API
  • Agent marketplace
  • Distributed deployment
  • GPU acceleration for AI tasks

Contributing

Contributions are welcome! Please read our Contributing Guidelines first.

License

MIT License - see LICENSE file for details

Support

Acknowledgments

Built with cutting-edge technologies and inspired by swarm intelligence principles.

About

AI-powered multi-agent system for intelligent automation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published