AgentZero is a sophisticated multi-agent system that leverages hive intelligence for collaborative problem-solving. It features specialized agents coordinated through a central hive system, enabling complex task execution through distributed intelligence.
- Hive Coordination: Central orchestrator managing multi-agent collaboration
- Specialized Agents: Purpose-built agents for specific domains
- Distributed Intelligence: Agents work together to solve complex problems
- Adaptive Learning: Agents learn from experience and improve over time
- Scalable Architecture: Easily add more agents as needed
-
Research Agent
- Web searching and data gathering
- Content extraction and analysis
- Fact verification and validation
- Sentiment analysis
- Knowledge graph construction
-
Code Agent
- Code generation in multiple languages
- Code analysis and optimization
- Debugging and error fixing
- Refactoring suggestions
- Test generation
-
Planning Agent (Coming Soon)
- Strategic task decomposition
- Resource allocation
- Timeline management
- Dependency resolution
-
Execution Agent (Coming Soon)
- Task execution monitoring
- System operations
- Integration management
- Python 3.9+
- Docker & Docker Compose (optional)
- Redis (for message queue)
- PostgreSQL (for persistent storage)
- Clone the repository:
git clone https://github.com/yourusername/agentzero.git
cd agentzero- Install dependencies:
pip install -r requirements.txt- Run the system:
python main.pydocker-compose up -dThis will start:
- Hive Coordinator
- Multiple Research Agents
- Multiple Code Agents
- Redis for messaging
- PostgreSQL for storage
- Prometheus & Grafana for monitoring
python main.py --mode interactiveCommands:
research <query>- Research a topiccode <description>- Generate codeanalyze <file>- Analyze code filestatus- Show system statusquit- Exit
python main.py --mode batch --tasks tasks.txtfrom agentzero import AgentZeroSystem
from src.core.agent import Task, Priority
# Initialize system
system = AgentZeroSystem()
await system.initialize()
# Submit a research task
task_id = await system.submit_task(
"Research latest developments in quantum computing",
task_type="research"
)
# Submit a code generation task
task_id = await system.submit_task(
"Generate a REST API for user management",
task_type="code_generation"
)
# Get system status
status = await system.get_status()
print(f"Active tasks: {status['hive']['active_tasks']}")βββββββββββββββββββββββββββββββββββββββββββ
β Hive Coordinator β
β β’ Task Distribution β
β β’ Agent Management β
β β’ Resource Optimization β
ββββββββββββββ¬βββββββββββββββββββββββββββββ
β
ββββββββββ΄βββββββββ¬βββββββββ¬βββββββββ
β β β β
βββββΌββββ ββββββββΌβββ ββββΌββββ ββββΌββββ
βResearchβ β Code β βPlan β βExec β
β Agent β β Agent β βAgent β βAgent β
ββββββββββ βββββββββββ ββββββββ ββββββββ
- Capability-Based: Match tasks to agents with required skills
- Load-Balanced: Distribute evenly across available agents
- Auction-Based: Agents bid for tasks they can handle
- Priority-Based: Consider agent performance metrics
- Round-Robin: Simple sequential distribution
# Hive Configuration
HIVE_ID=main-hive
DISTRIBUTION_STRATEGY=capability_based
# Agent Configuration
RESEARCH_AGENTS=2
CODE_AGENTS=2
# Database
POSTGRES_URL=postgresql://user:pass@localhost/agentzero
REDIS_URL=redis://localhost:6379
# Monitoring
LOG_LEVEL=INFO# config/agentzero.yml
hive:
distribution_strategy: capability_based
max_tasks_per_agent: 5
heartbeat_interval: 30
agents:
research:
count: 2
max_depth: 3
max_pages: 50
code:
count: 2
languages:
- python
- javascript
- typescriptAccess Grafana dashboard at http://localhost:3000 (default: admin/admin)
Key metrics:
- Agent utilization
- Task completion rate
- Average task duration
- Hive efficiency score
- Memory usage per agent
agentzero/
βββ src/
β βββ core/ # Core agent framework
β βββ hive/ # Hive coordination system
β βββ agents/ # Specialized agent implementations
β βββ tools/ # Agent tools and utilities
β βββ memory/ # Memory and learning systems
β βββ communication/ # Inter-agent communication
βββ tests/ # Test suite
βββ config/ # Configuration files
βββ docker/ # Docker configurations
βββ docs/ # Documentation
from src.core.agent import BaseAgent, Task
class CustomAgent(BaseAgent):
async def execute(self, task: Task):
# Implement task execution logic
result = await self.process_custom_task(task)
return resultpytest tests/
pytest tests/ --cov=src --cov-report=html- Core agent framework
- Hive coordinator
- Research agent
- Code agent
- Planning agent
- Execution agent
- Web UI dashboard
- REST API
- Agent marketplace
- Distributed deployment
- GPU acceleration for AI tasks
Contributions are welcome! Please read our Contributing Guidelines first.
MIT License - see LICENSE file for details
- Documentation: docs/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Built with cutting-edge technologies and inspired by swarm intelligence principles.