Skip to content

Timorleiderman/OpenDVCW

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

96 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

If our open source codes are helpful for your research, please cite our technical report:

@Article{e26100836,
AUTHOR = {Leiderman, Timor and Ben Ezra, Yosef},
TITLE = {Information Bottleneck Driven Deep Video Compression—IBOpenDVCW},
JOURNAL = {Entropy},
VOLUME = {26},
YEAR = {2024},
NUMBER = {10},
ARTICLE-NUMBER = {836},
URL = {https://www.mdpi.com/1099-4300/26/10/836},
ISSN = {1099-4300},
DOI = {10.3390/e26100836}
}

Training:

prepare the dataset:

install BPG for training we used BPG to compress the first frame for the I frame compression training

unzip the files to some dir

Use the script to generate the .npy file containing all the paths to the dataset images tools/gen_vimeo_npy.py

We used 240x240x3 resolution for training

Docker

docker build -t tensorflow-wavelets:1.0 .

docker run --privileged=true -v /mnt/:/mnt/ --gpus all --user 1000:1000 -p 6006:6006 -p 8080:8080 tensorflow-wavelets:1.0

Based on

Lu, Guo, et al. "DVC: An end-to-end deep video compression framework." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019. Paper

conda env

conda create -n py38 python=3.8
pip install -r 

Free Software, Hell Yeah!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published