Skip to content

Standalone offline skin-cancer detection system built with Swin Transformer + DenseNet-169 + U-Net architecture, deployed as a Windows WPF MSI installer using ONNX for real-time local inference.

License

Notifications You must be signed in to change notification settings

Vaibhav5012/ECLIPSE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

61 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Project Banner

✨ ECLIPSE – Offline Skin Lesion Classification

Fully Offline Β· Standalone MSI Installer Β· Parallel Swin Encoder . DenseNet-169


πŸš€ Overview

ECLIPSE is a standalone, fully offline skin lesion classification system built using a
Swin Transformer + DenseNet-169 + U-Net encoder architecture, deployed as a Windows MSI installer.

It runs entirely on-device, ensuring:

  • πŸ”’ Complete data privacy
  • ⚑ Fast processing
  • 🌐 Zero internet dependency
  • πŸ–₯️ Seamless deployment on any Windows machine

🧠 System Architecture

πŸ”„ Workflow

Workflow Diagram

πŸ—οΈ Parallel Encoder β€” DenseNet-169 + U-Net

Gemini_Generated_Image_22vc1p22vc1p22vc


πŸ’» Application Screenshots

πŸ–ΌοΈ Input View

Input View

πŸ“Ÿ Prediction Output

Prediction Output

πŸ” Classification UI

Classification UI


⭐ Features

  • πŸ”Œ 100% Offline β€” No cloud, no external API calls
  • πŸ“¦ Distributed as a Windows MSI Installer
  • 🧠 ONNX Runtime for fast, local inference
  • 🎯 Benign / Malignant classification with confidence %
  • πŸ“Š Optional CSV export
  • πŸ”’ Guaranteed privacy β€” images never leave the device
  • πŸ–₯️ Clean and intuitive WPF interface

πŸ“₯ Installation (MSI)

  1. Download ECLIPSE v1.0.0.msi
  2. Run the installer
  3. Follow the setup wizard
  4. Launch via:
    Start Menu β†’ ECLIPSE – Skin Lesion Classifier

βœ” No dependencies required
βœ” No internet required
βœ” Works instantly after installation


πŸ“˜ Usage

  1. Open ECLIPSE
  2. Click Browse and select a dermoscopic image
  3. Click Predict
  4. View:
    • Benign / Malignant classification
    • Confidence score
  5. (Optional) Export results as CSV

All inference happens locally using the embedded ONNX model.


πŸ“Š Results

πŸ“ˆ Confusion Matrix

Confusion Matrix


πŸ“‰ Training Curves

πŸ”Ή Training History

Training History

πŸ”Ή Fine-Tune Curves

Fine Tune Curves


πŸ‘₯ Contributors

Anagha P Kulkarni Β 
Debabrata Kuiry Β 
B Chiru Vaibhav Β 


Dataset used: Unified Dataset for Skin Cancer Classification on Kaggle


πŸ“„ License

Academic use only.


About

Standalone offline skin-cancer detection system built with Swin Transformer + DenseNet-169 + U-Net architecture, deployed as a Windows WPF MSI installer using ONNX for real-time local inference.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •