ILS - Z534 Search Project on Yelp Dataset Challenge
- Dhvani Deven Kotak (dkotak@indiana.edu)
- Manikandan Murugesan (murugesm@indiana.edu)
- Rohit Dandona (rdandona@indiana.edu)
- Vikrant Kaushal (vkaushal@indiana.edu)
- Yash Sumant Ketkar (yketkar@indiana.edu)
Question: To help the entrepreneurs find the best location to build a successful restaurant.
Requirements:
-
Python Version - 2.7.12
-
MongoDB Version - 3.4
-
Run
pip install pymongo -
Run
pip install gensim -
Run
pip install nltk -
Run
import nltkandnltk.download()in a python shell -
Run
pip install -U jupyter -
Run
jupyter nbextension enable --py --sys-prefix widgetsnbextension -
Run
pip install gmaps -
Run
jupyter nbextension enable --py gmaps -
python CorpusLoader.py
-
Populates the reviews for Phoenix, Arizona from the dataset JSON files where type of business equals to the restaurant.
-
Makes reviews more simplified for analysis by using nltk.
-
python TopicModelling.py
-
Gensim python library creates a LDA model for different reviews.
-
python DisplayTopics.py
-
Displays the six major topics and the sub-topics with maximum weightages respectively.
-
All 60 topics were categorized so as to highlight the sub-topic they represent.
-
The 60 subtopics highlighted in topics.txt
-
python GetBusinessRating.py
-
Create Ratings Collection in MongoDB.
-
python SaveBusinessInfo.py
-
Create Business Info Collection in MongoDB.
-
python GetTop10BusinessTopic.py
-
Business Frequency Topic is plotted by data generated.
-
python DisplayTopicsForReview.py
-
Displays the topics for review.
-
Open Google_Maps_Heat_Map.ipynb in Jupyter Notebook
-
Enter the topic and rating.
-
Displays a heatmap of restaurants based on topic