Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 13 additions & 3 deletions python/tvm/relax/frontend/onnx/onnx_frontend.py
Original file line number Diff line number Diff line change
Expand Up @@ -3347,10 +3347,20 @@ def _impl_v1(cls, bb, inputs, attr, params):
x = inputs[0]
dtype = x.struct_info.dtype
alpha = float(attr.get("alpha", 0.2))
alpha = relax.const(alpha, dtype=dtype)
alpha_const = relax.const(alpha, dtype=dtype)
beta = float(attr.get("beta", 0.5))
beta = relax.const(beta, dtype=dtype)
return relax.op.clip(relax.op.add(relax.op.multiply(alpha, x), beta), 0, 1)
beta_const = relax.const(beta, dtype=dtype)

is_nan = relax.op.not_equal(x, x)

zero_const = relax.const(0.0, dtype=dtype)
x_safe = relax.op.where(is_nan, zero_const, x)

transformed = relax.op.add(relax.op.multiply(alpha_const, x_safe), beta_const)
clipped = relax.op.clip(transformed, 0, 1)

nan_const = relax.const(float("nan"), dtype=dtype)
return relax.op.where(is_nan, nan_const, clipped)


class HardSwish(OnnxOpConverter):
Expand Down
25 changes: 25 additions & 0 deletions tests/python/relax/test_frontend_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -1089,6 +1089,31 @@ def test_hardsigmoid():
verify_unary("HardSigmoid", [1, 3, 20, 20], attrs={"alpha": 0.5, "beta": 0.6})


def test_hardsigmoid_nan():
"""Test that HardSigmoid preserves NaN values in output."""
test_node = helper.make_node("HardSigmoid", ["x"], ["y"])
graph = helper.make_graph(
[test_node],
"hardsigmoid_nan_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, [3, 4])],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, [3, 4])],
)

model = helper.make_model(graph, producer_name="hardsigmoid_nan_test")

# Create input with NaN values
input_data = np.array(
[
[np.nan, 0.5, -0.5, 1.0],
[0.0, np.nan, 2.0, -2.0],
[0.3, 0.7, np.nan, np.nan],
],
dtype=np.float32,
)

check_correctness(model, inputs={"x": input_data})


def test_shrink():
verify_unary("Shrink", [32, 32])
verify_unary("Shrink", [32, 32], attrs={"lambd": 0.2, "bias": 0.1})
Expand Down