Skip to content

[๐Ÿ† ์ตœ์šฐ์ˆ˜์ƒ] ํฌ์Šค์ฝ”์•„์นด๋ฐ๋ฏธ30th_TeamA2_AIProject

Notifications You must be signed in to change notification settings

arieum/AIProject

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

7 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ“ž POPIPOPI: ์ง„ํ™”ํ•˜๋Š” ๋ณด์ด์Šคํ”ผ์‹ฑ์— ๋งž์„œ๋Š” ์‹ค์‹œ๊ฐ„ ๋งž์ถค ๋Œ€์‘

image

ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ

ํ•œ ์ค„ ์š”์•ฝ: ํ†ตํ™” ๋‚ด์šฉ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ STT โ†’ ํƒ์ง€(๋ถ„๋ฅ˜๊ธฐ) โ†’ ๋ฒ•๋ฅ ยท๊ธฐ๊ด€ ๊ทผ๊ฑฐ RAG โ†’ ํ–‰๋™ ๊ฐ€์ด๋“œ๊นŒ์ง€ ์•ˆ๋‚ดํ•˜๋Š” ๋ณด์ด์Šคํ”ผ์‹ฑ ๋Œ€์‘ ํ”Œ๋žซํผ.

2.mp4

Python Android License-MIT Model LLM


๐Ÿ“š ๋ชฉ์ฐจ


โœจ ํ•ต์‹ฌ ๊ธฐ๋Šฅ

  • ์‹ค์‹œ๊ฐ„ ํƒ์ง€: ์Œ์„ฑ์ธ์‹ โ†’ STT โ†’ ๋ฌธ์žฅ ๋‹จ์œ„ ๋ถ„๋ฅ˜(์ •์ƒ/์˜์‹ฌ + ์œ„ํ—˜๋„ ์ ์ˆ˜).
  • ๊ทผ๊ฑฐ ์ œ์‹œ: ํ—Œ๋ฒ•ยทํ˜•์‚ฌ์†Œ์†ก๋ฒ•ยท๊ธˆ์œต๊ธฐ๊ด€ ๊ฐ€์ด๋“œ ๋“ฑ RAG๋กœ ์™œ ๋ณด์ด์Šคํ”ผ์‹ฑ์ธ์ง€๋ฅผ ์ฆ‰์‹œ ์„ค๋ช….
  • ๋Œ€์‘ ๊ฐ€์ด๋“œ: ์ƒํ™ฉ๋ณ„ ์ฆ‰์‹œ ํ–‰๋™ ๊ฐ€์ด๋“œ(ํ†ตํ™” ์ข…๋ฃŒ/๋Œ€ํ‘œ๋ฒˆํ˜ธ ์žฌํ™•์ธ/์‹ ๊ณ  ๋“ฑ) ์ œ๊ณต.
  • ์‹œ๊ฐํ™”: ์œ„ํ—˜๋„(0โ€“100) ํƒ€์ž„๋ผ์ธ, ์˜์‹ฌ ํ‚ค์›Œ๋“œ ํ•˜์ด๋ผ์ดํŒ….

๊ธฐ์กด ํ†ต์‹ ์‚ฌ ์†”๋ฃจ์…˜์˜ ํƒ์ง€ ์ค‘์‹ฌ ํ•œ๊ณ„๋ฅผ ๋„˜์–ด, ํƒ์ง€ โ†’ ๊ทผ๊ฑฐ โ†’ ๋Œ€์‘๊นŒ์ง€ ์™„์ „ํ•œ ๋ณดํ˜ธ ํ๋ฆ„ ์ œ๊ณต.


๐Ÿงฑ ์•„ํ‚คํ…์ฒ˜

image

ํŒŒ์ดํ”„๋ผ์ธ

  1. STT: ํ†ตํ™” ์Œ์„ฑ ์ŠคํŠธ๋ฆฌ๋ฐ โ†’ ํ…์ŠคํŠธ ๋ณ€ํ™˜
  2. ํƒ์ง€(Detection): RoBERTa ๊ธฐ๋ฐ˜ ๋ถ„๋ฅ˜๊ธฐ โ†’ ๋ณด์ด์Šคํ”ผ์‹ฑ ํ™•๋ฅ  ์‚ฐ์ถœ
  3. RAG ๊ฒ€์ƒ‰: ๋ฒ•๋ นยท๊ธฐ๊ด€ ๋ฌธ์„œ ์ž„๋ฒ ๋”ฉ/๊ฒ€์ƒ‰ โ†’ reranking(K=2)
  4. LLM ๋ถ„์„: ๊ทผ๊ฑฐ ๊ธฐ๋ฐ˜ ์„ค๋ช… ์ƒ์„ฑ(ํ™˜๊ฐ ์–ต์ œ)
  5. ๊ฐ€์ด๋“œ: ์ฆ‰์‹œ ํ–‰๋™ ์ง€์นจ & ๋Œ€ํ‘œ๋ฒˆํ˜ธ ์žฌํ™•์ธ/์‹ ๊ณ  ํ”Œ๋กœ์šฐ

๐Ÿ—‚ ๋ฐ์ดํ„ฐ์…‹

image
  • ์ •์ƒ ๋Œ€ํ™”

    • GitHub KorCCVi ์ผ์ƒ ๋Œ€ํ™”
    • AI-Hub ์ฝœ์„ผํ„ฐ ๊ธˆ์œต์ƒ๋‹ด
    • GPT ๊ธฐ๋ฐ˜ ๊ณต๊ณต๊ธฐ๊ด€ ์ •์ƒ ๋Œ€ํ™” ์ƒ์„ฑ(๊ฒ€์ฆยทํ•„ํ„ฐ๋ง ํฌํ•จ)
  • ๋ณด์ด์Šคํ”ผ์‹ฑ

    • GitHub KorCCVi ๋ณด์ด์Šคํ”ผ์‹ฑ ๋Œ€ํ™”
    • ๊ธˆ์œต๊ฐ๋…์› ๊ทธ๋†ˆ๋ชฉ์†Œ๋ฆฌ(mp3 โ†’ ํ…์ŠคํŠธํ™”)
  • ๋ผ๋ฒจ๋ง ๋ฒ„์ „

    • ver.0: ์ด์ง„(์ •์ƒ=0/ํ”ผ์‹ฑ=1)
    • ver.1: ํ‚ค์›Œ๋“œ ๋ผ๋ฒจ๋ง(์˜์‹ฌ ๋‹จ์–ด ํ•˜์ด๋ผ์ดํŠธ)
    • ver.2: ๋ถ„์„๋ฌธ ๋ผ๋ฒจ๋ง(์™œ ์œ„ํ—˜ํ•œ์ง€ ๊ทผ๊ฑฐ ์š”์•ฝ)

๐Ÿง ๏ธ ๋ชจ๋ธ (Models)

๋ถ„๋ฅ˜๊ธฐ (Detection)

  • ๋ฒ ์ด์Šค: KLUEโ€‘RoBERTa / KoBERT / ALBERT / DistilKoBERT ๋น„๊ต
  • ์ถœ๋ ฅ: ๋ณด์ด์Šคํ”ผ์‹ฑ ํ™•๋ฅ (0โ€“1), ์˜์‹ฌ ํ‚ค์›Œ๋“œ(์˜ต์…˜)
  • ์˜จ๋””๋ฐ”์ด์Šค/์ €์ง€์—ฐ์„ ์œ„ํ•œ ๊ฒฝ๋Ÿ‰ํ™”(KD/Pruning/Quant, QLoRA) ์ ์šฉ

๊ฒฝ๋Ÿ‰ํ™” ์‹คํ—˜(์š”์•ฝ)

  • KD(Student) ๊ธฐ์ค€ Latency 3ร— ๊ฐœ์„ , GPU ๋ฉ”๋ชจ๋ฆฌ 79% ์ ˆ๊ฐ, Acc/F1 95%+ ์œ ์ง€
image

๐Ÿงฉ LLM & RAG

๋ชฉํ‘œ

  • ํ™˜๊ฐ ์–ต์ œ์™€ ๋ฒ•๋ นยท๊ธฐ๊ด€ ๊ทผ๊ฑฐ ๊ธฐ๋ฐ˜ ์„ค๋ช…ํ˜• ์‘๋‹ต

์„ ํƒ ๋ชจ๋ธ

  • Qwen2.5โ€‘3Bโ€‘Instruct, Gemmaโ€‘3โ€‘4Bโ€‘IT (๋ถ„์„ํ˜• ํŒŒ์ธํŠœ๋‹)

ํŒŒ์ธํŠœ๋‹ ํฌ์ธํŠธ

  • Keyword ๊ธฐ๋ฐ˜ โ†’ ๋ชจํ˜ธ/๋ถˆ์•ˆ์ •
  • Analysis ๊ธฐ๋ฐ˜ โ†’ ๋งฅ๋ฝ ๋น„๊ตยท๊ทผ๊ฑฐ ์ œ์‹œ์— ์œ ๋ฆฌ (์ตœ์ข… ์„ ์ •: Qwenโ€‘Analysis)

RAG ํ”„๋กœ์„ธ์Šค

  1. Docs: ํ—Œ๋ฒ•/ํ˜•์‚ฌ์†Œ์†ก๋ฒ•/๊ธˆ์œต๊ธฐ๊ด€ ๊ฐ€์ด๋“œ(์˜ˆ: ๊ตญ๋ฏผ์€ํ–‰ 10๊ณ„๋ช…)
  2. Embedding & VDB: ๋ฌธ์„œ ์ž„๋ฒ ๋”ฉ โ†’ Vector DB ์ €์žฅ
  3. 1st Retriever: Topโ€‘10 ํ›„๋ณด
  4. Reranker: ๋ฌธ๋งฅ ์ ํ•ฉ๋„ ์žฌ์ •๋ ฌ โ†’ Topโ€‘K(2)
  5. LLM ํ•ฉ์„ฑ: ๊ทผ๊ฑฐ ํฌํ•จ ์š”์•ฝ/์„ค๋ช… ์ƒ์„ฑ

ํ”„๋กฌํ”„ํŠธ ํ”„๋ ˆ์ž„(Zeroโ€‘shot ์˜ˆ์‹œ)

ํŽผ์น˜๊ธฐ
# ์—ญํ• 
๋„ˆ๋Š” ๋ณด์ด์Šคํ”ผ์‹ฑ ํƒ์ง€ AI ์ „๋ฌธ๊ฐ€๋‹ค. ํ†ตํ™” ๋‚ด์šฉ์˜ ํ‘œํ˜„/๋งฅ๋ฝ์„ ๋ถ„์„ํ•ด ์œ„ํ—˜๋„๋ฅผ ํŒ๋‹จํ•˜๊ณ ,
์ •์ƒ ์ ˆ์ฐจ/๋ฒ•์  ๊ทผ๊ฑฐ์™€ ๋น„๊ตํ•ด ์™œ ๋น„์ •์ƒ์ธ์ง€ ํ•œ ๋ฌธ์žฅ์œผ๋กœ ์„ค๋ช…ํ•˜๋ผ.

# ๋ถ„์„ ๋‹จ๊ณ„
1) ํ™”์ž ์‹ ๋ถ„ 2) ๊ธด๊ธ‰์„ฑ/์œ„ํ˜‘ 3) ์š”๊ตฌ์‚ฌํ•ญ 4) ๋น„์ƒ์‹์  ์œ ๋„ โ†’ ์ข…ํ•ฉ

# ์ถœ๋ ฅ ํ˜•์‹
- ๋ถ„์„ ๊ณผ์ •: (1)~(4)
- ์š”์•ฝ: ํ•ต์‹ฌ ๊ทผ๊ฑฐ 2โ€“3๋ฌธ์žฅ

๐Ÿงช ํ‰๊ฐ€ & ๋ฒค์น˜๋งˆํฌ

LLM ํŒŒ์ธํŠœ๋‹ ์ „/ํ›„(์š”์•ฝ)

  • ํŒŒ์ธํŠœ๋‹ ์ „: ์ผ๋ฐ˜ ์„ค๋ช… ์œ„์ฃผ, ๋งฅ๋ฝ ๋Œ€์‘ ๋ฏธํก
  • Analysis ๊ธฐ๋ฐ˜ ํŒŒ์ธํŠœ๋‹ ํ›„: ์ƒํ™ฉ ์ ํ•ฉ์„ฑยท์•ˆ์ •์„ฑ ํ–ฅ์ƒ (Qwenโ€‘Analysis ์šฐ์ˆ˜)

LLM ์ง€์—ฐ/๋ฉ”๋ชจ๋ฆฌ(์˜ˆ)

๋ชจ๋ธ Latency (ms/sample) Params GPU Mem
Qwen2.5โ€‘3B 12,335 3.1B 3.9 GB
Qwen2.5โ€‘1.5B (KD+QLoRA) 4,824 1.6B 2.4 GB
image

๐Ÿ“Ž ์ฐธ๊ณ  ๋ฌธํ—Œ

  1. Lu, Y. et al., Fantastically Ordered Prompts and Where to Find Them (2021).
  2. Xie, S. M. et al., In-Context Learning as Implicit Bayesian Inference (2021).
  3. Sanh, V. et al., T0: Multitask Prompted Training Enables Zeroโ€‘Shot Task Generalization (2021).

ETC

๐Ÿ‘ฅ ํŒ€์› ์†Œ๊ฐœ

๊น€๋„ํ˜„ ์•ˆ์˜ˆ์€ ์ด๋™๋ก ์ด๋ณด๋ฆผ ์ด์•„๋ฆผ ์žฅ์œ ์ง„

Tech

Leader

Domain

Presentation

Tech

Presentation

About

[๐Ÿ† ์ตœ์šฐ์ˆ˜์ƒ] ํฌ์Šค์ฝ”์•„์นด๋ฐ๋ฏธ30th_TeamA2_AIProject

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 97.4%
  • Swift 2.6%