Skip to content

awetomaton/VISTA

Repository files navigation

VISTA - Visual Imagery Software Tool for Analysis

Now an open-source MIT-licensed Awetomaton project for the GEOINT community

Logo

VISTA is a PyQt6-based desktop application for viewing, analyzing, and managing multi-frame imagery datasets along with associated detection and track overlays. It's designed for scientific and analytical workflows involving temporal image sequences with support for time-based and geodetic coordinate systems, sensor calibration data, and radiometric processing.

Version Python License PyPI

Watch the demo!

Watch the demo

Important Assumptions

Frame Synchronization Across Imagery Datasets per Sensor:

VISTA assumes that all loaded imagery datasets for a given sensor are temporally synchronized. Specifically:

  • Frame numbers represent the same temporal moments across all imagery
  • Frame 10 in one imagery dataset corresponds to the exact same time as frame 10 in any other imagery for the same sensor
  • This assumption is critical for proper visualization and analysis when multiple imagery datasets are loaded simultaneously
  • When loading tracks with time-based mapping, the selected imagery's time-to-frame mapping is used as the reference

Features

Multi-Frame Imagery Viewer

  • Display full image sequences from HDF5 files with optional time and geodetic metadata
  • Support for multiple simultaneous imagery datasets (must have unique names)
  • Sensor calibration data support: bias/dark frames, uniformity gain corrections, bad pixel masks, and radiometric gain values
  • Interactive image histogram with dynamic range adjustment
  • Frame-by-frame navigation with keyboard shortcuts
  • Interactive AOI (Area of Interest) Drawing: Right-click context menu to draw rectangular regions for focused processing
  • Geolocation tooltip: Display latitude/longitude coordinates when hovering over imagery (requires geodetic polynomials)
  • Pixel value tooltip: Display pixel intensity values when hovering over imagery

Advanced Track Support

  • Multiple coordinate systems:
    • Pixel coordinates (Row/Column)
    • Geodetic coordinates (Latitude/Longitude/Altitude) with automatic conversion. Note that at this time this software assumes the altitude is always zero (tracks are already projected to ground)
    • Time-based or frame-based indexing
  • Automatic coordinate conversion:
    • Times → Frames using imagery timestamps
    • Geodetic coordinates (Lat/Lon/Alt) → Pixel coordinates using 4th-order polynomials
  • Priority system: Row/Column takes precedence over geodetic; Frames takes precedence over times
  • Manual track creation and editing:
    • Click-to-create tracks with automatic frame tracking
    • Edit existing tracks by adding/removing points
    • Intelligent point selection modes for precise point placement:
      • Verbatim: Use exact clicked location
      • Peak: Automatically snap to brightest pixel within configurable radius
      • CFAR: Use CFAR detection algorithm to find signal blob centroid with full parameter control
    • Point selection settings persist across sessions
  • Track path rendering with customizable colors and line widths
  • Current position markers with selectable styles
  • Tail length control (show full history or last N frames)
  • Complete track visualization (override current frame)
  • Track length calculation (cumulative distance)

Detection Overlay

  • Load detection CSV files with multiple detector support
  • Manual detection creation and editing: Click-to-add detection points at current frame with intelligent point selection modes (Verbatim, Peak, CFAR)
  • Customizable markers (circle, square, triangle, diamond, plus, cross, star)
  • Adjustable colors, marker sizes, and line thickness
  • Show/hide individual detectors
  • Detection styling persistence across sessions
  • Detection selection and deletion

Track and Detection Labeling

  • Flexible labeling system: Assign custom text labels to individual tracks and detections for classification and organization
  • Label management: Create, rename, and delete labels through the centralized Labels Manager
  • Bulk label assignment: Apply labels to multiple tracks or detections simultaneously from the data manager
  • Label-based filtering: Filter tracks and detections by label in the data manager tables for focused analysis
  • Label persistence: Labels are saved with data and persist across sessions
  • Classification workflows: Support for analyst review, ground truth annotation, and multi-class classification tasks
  • Menu Access: Labels menu item for centralized label management

Built-in Detection Algorithms

  • CFAR (Constant False Alarm Rate): Adaptive threshold detector with guard and background windows
    • Supports three detection modes: 'above' (bright objects), 'below' (dark objects), 'both' (absolute deviation)
  • Simple Threshold: Basic intensity-based detection with configurable threshold
    • Supports three detection modes: 'above' (positive values), 'below' (negative values), 'both' (absolute value)

Built-in Tracking Algorithms

  • Simple Tracker: Nearest-neighbor association with maximum distance threshold
  • Kalman Filter Tracker: State estimation with motion models and measurement uncertainty
  • Network Flow Tracker: Global optimization using min-cost flow for track assignment
  • Tracklet Tracker: Two-stage hierarchical tracker optimized for high false alarm scenarios (100:1 or higher)
    • Stage 1: Forms high-confidence tracklets using strict association criteria
    • Stage 2: Links tracklets based on velocity extrapolation and smoothness

Image Enhancement

  • Coaddition: Temporal averaging for noise reduction and signal enhancement
    • Configurable frame window for averaging
    • Creates enhanced imagery with improved SNR

Background Removal Algorithms

  • Temporal Median: Remove static backgrounds using median filtering
    • Configurable temporal window and offset
    • Preserves moving objects while removing static elements
    • Supports AOI (Area of Interest) processing
  • Robust PCA: Principal component analysis for background/foreground separation
    • Low-rank matrix decomposition
    • Robust to outliers and sparse foreground
    • Supports AOI (Area of Interest) processing
    • Separates imagery into background and foreground components

Image Treatments (Sensor Calibration)

  • Bias Removal: Apply bias/dark frame correction using calibration data
    • Subtracts sensor dark current from imagery
    • Uses frame-specific bias images based on bias_images and bias_image_frames
    • Supports AOI (Area of Interest) processing
  • Non-Uniformity Correction (NUC): Apply flat-field gain correction
    • Corrects pixel-to-pixel response variations
    • Uses frame-specific uniformity gain images based on uniformity_gain_images and uniformity_gain_image_frames
    • Supports AOI (Area of Interest) processing

Playback Controls

  • Play/Pause with adjustable FPS (-100 to +100 FPS for reverse playback)
  • Frame slider and direct frame number input
  • Bounce Mode: Loop playback between arbitrary frame ranges
  • Time display integration when image timestamps are available
  • Actual FPS tracking display

Data Manager Panel

  • Tabbed interface for managing Imagery, Tracks, and Detections
  • Bulk property editing (visibility, colors, markers, sizes, line thickness)
  • Label assignment and filtering: Apply labels to tracks/detections and filter by label
  • Column filtering and sorting for tracks and detections
  • Real-time updates synchronized with visualization
  • Track editing with complete track toggle

Geolocation Support

  • 4th-order polynomial geodetic coordinate conversion (Lat/Lon/Alt ↔ Row/Column)
  • Optional geodetic coordinate tooltip display
  • Automatic coordinate system detection in track files
  • Imagery selection dialog for tracks requiring conversion

Robust Data Loading

  • Background threading for non-blocking file I/O
  • Progress dialogs with cancellation support
  • Automatic detection of coordinate systems and time formats
  • Intelligent imagery selection for coordinate/time conversion
  • Error handling and user-friendly error messages
  • Persistent file browser history via QSettings

Installation

Prerequisites

  • Python 3.9 or higher

Installation via pip (Recommended)

VISTA is available on PyPI and can be installed with pip:

pip install vista-imagery

After installation, you can launch VISTA using the command:

vista

Or programmatically in Python:

from vista.app import VistaApp
app = VistaApp()
app.exec()

Installation from Source

  1. Clone the repository:
git clone https://github.com/awetomaton/VISTA.git
cd vista
  1. Install in development mode:
pip install -e .

Or install with development dependencies:

pip install -e ".[dev]"
  1. Run the application:
vista
# Or
python -m vista

Dependencies

The following dependencies are automatically installed with pip:

  • PyQt6 - GUI framework
  • pyqtgraph - High-performance visualization
  • h5py - HDF5 file support
  • pandas - Data manipulation
  • numpy - Numerical computing
  • astropy - Astronomical/geodetic calculations
  • darkdetect - Dark mode detection
  • scikit-image - Image processing
  • scipy - Scientific computing

Note: Pillow is automatically included via scikit-image and is required for Earth background simulation feature.

Input Data Formats

Imagery Data (HDF5 Format)

VISTA uses HDF5 files to store image sequences with optional time and geodetic metadata.

Required Datasets

images (3D array)

  • Shape: (N_frames, height, width)
  • Data type: float32 (recommended)
  • Description: Stack of grayscale images
  • Storage: Chunked format supported for large datasets

frames (1D array)

  • Shape: (N_frames,)
  • Data type: int
  • Description: Frame number or index for each image

Optional Datasets

Timestamps:

  • unix_time: 1D array of int64 (seconds since Unix epoch)
  • unix_fine_time: 1D array of int64 (nanosecond offset for high-precision timing)

Geodetic Conversion Polynomials (4th-order, 15 coefficients each):

  • poly_row_col_to_lat: Shape (N_frames, 15) - Convert pixel col/row to latitude
  • poly_row_col_to_lon: Shape (N_frames, 15) - Convert pixel col/row to longitude
  • poly_lat_lon_to_row: Shape (N_frames, 15) - Convert lon/lat to pixel row
  • poly_lat_lon_to_col: Shape (N_frames, 15) - Convert lon/lat to pixel column

Polynomial format: f(x,y) = c0 + c1*x + c2*y + c3*x^2 + c4*x*y + c5*y^2 + c6*x^3 + c7*x^2*y + c8*x*y^2 + c9*y^3 + c10*x^4 + c11*x^3*y + c12*x^2*y^2 + c13*x*y^3 + c14*y^4

Sensor Calibration Data:

These datasets support sensor calibration and radiometric correction workflows. Each calibration dataset has a corresponding frames array that indicates when each calibration becomes applicable.

  • bias_images: Shape (N_bias, height, width) - Dark/bias frames for dark current correction
  • bias_image_frames: Shape (N_bias,) - Frame numbers where each bias image becomes applicable
  • uniformity_gain_images: Shape (N_gain, height, width) - Flat-field/gain correction images
  • uniformity_gain_image_frames: Shape (N_gain,) - Frame numbers where each gain image becomes applicable
  • bad_pixel_masks: Shape (N_masks, height, width) - Bad pixel masks (1=bad, 0=good)
  • bad_pixel_mask_frames: Shape (N_masks,) - Frame numbers where each mask becomes applicable
  • radiometric_gain: Shape (N_frames,) - Per-frame radiometric gain values (converts counts to physical units)

Calibration Frame Semantics: Frame N in a calibration frames array applies to all frames >= N until the next calibration frame. For example, if bias_image_frames = [0, 100], then bias_images[0] applies to frames 0-99 and bias_images[1] applies to frames 100+.

Example HDF5 Structure

imagery.h5
├── images (Dataset)
│   └── Shape: (100, 512, 512)
│   └── dtype: float32
│   └── Chunks: (1, 512, 512)
├── frames (Dataset)
│   └── Shape: (100,)
│   └── dtype: int64
├── unix_time (Dataset) [optional]
│   └── Shape: (100,)
│   └── dtype: int64
├── unix_fine_time (Dataset) [optional]
│   └── Shape: (100,)
│   └── dtype: int64
├── poly_row_col_to_lat (Dataset) [optional]
│   └── Shape: (100, 15)
├── poly_row_col_to_lon (Dataset) [optional]
│   └── Shape: (100, 15)
├── poly_lat_lon_to_row (Dataset) [optional]
│   └── Shape: (100, 15)
├── poly_lat_lon_to_col (Dataset) [optional]
│   └── Shape: (100, 15)
├── bias_images (Dataset) [optional]
│   └── Shape: (2, 512, 512)
├── bias_image_frames (Dataset) [optional]
│   └── Shape: (2,)
├── uniformity_gain_images (Dataset) [optional]
│   └── Shape: (2, 512, 512)
├── uniformity_gain_image_frames (Dataset) [optional]
│   └── Shape: (2,)
├── bad_pixel_masks (Dataset) [optional]
│   └── Shape: (2, 512, 512)
├── bad_pixel_mask_frames (Dataset) [optional]
│   └── Shape: (2,)
└── radiometric_gain (Dataset) [optional]
    └── Shape: (100,)

Creating Imagery Files

import h5py
import numpy as np

# Create synthetic imagery
n_frames = 100
height, width = 512, 512
images = np.random.rand(n_frames, height, width).astype(np.float32)
frames = np.arange(n_frames)

# Save to HDF5
with h5py.File("imagery.h5", "w") as f:
    f.create_dataset("images", data=images, chunks=(1, height, width))
    f.create_dataset("frames", data=frames)

    # Optional: Add timestamps
    unix_time = np.arange(1609459200, 1609459200 + n_frames)
    f.create_dataset("unix_time", data=unix_time)
    f.create_dataset("unix_fine_time", data=np.zeros(n_frames, dtype=np.int64))

    # Optional: Add geodetic conversion polynomials
    # Example: Simple linear mapping for demonstration
    poly_row_col_to_lat = np.zeros((n_frames, 15))
    poly_row_col_to_lat[:, 0] = 40.0  # Base latitude
    poly_row_col_to_lat[:, 1] = 0.0001  # Row scaling
    f.create_dataset("poly_row_col_to_lat", data=poly_row_col_to_lat)

    poly_row_col_to_lon = np.zeros((n_frames, 15))
    poly_row_col_to_lon[:, 0] = -105.0  # Base longitude
    poly_row_col_to_lon[:, 2] = 0.0001  # Column scaling
    f.create_dataset("poly_row_col_to_lon", data=poly_row_col_to_lon)

    # Inverse polynomials
    poly_lat_lon_to_row = np.zeros((n_frames, 15))
    poly_lat_lon_to_row[:, 0] = -40.0 / 0.0001
    poly_lat_lon_to_row[:, 1] = 1.0 / 0.0001
    f.create_dataset("poly_lat_lon_to_row", data=poly_lat_lon_to_row)

    poly_lat_lon_to_col = np.zeros((n_frames, 15))
    poly_lat_lon_to_col[:, 0] = 105.0 / 0.0001
    poly_lat_lon_to_col[:, 2] = 1.0 / 0.0001
    f.create_dataset("poly_lat_lon_to_col", data=poly_lat_lon_to_col)

Track Data (CSV Format)

Track files represent trajectories of moving objects over time. VISTA supports multiple coordinate systems with automatic conversion.

Coordinate System Options

Option 1: Frame + Pixel Coordinates (Standard)

  • Requires: Frames, Rows, Columns

Option 2: Time + Pixel Coordinates

  • Requires: Times, Rows, Columns
  • Times automatically mapped to frames using imagery timestamps

Option 3: Frame + Geodetic Coordinates

  • Requires: Frames, Latitude, Longitude
  • Geodetic coordinates automatically converted to pixels using imagery polynomials

Option 4: Time + Geodetic Coordinates

  • Requires: Times, Latitude, Longitude
  • Both conversions performed automatically

Priority System:

  • If both Frames and Times are present, Frames takes precedence
  • If both pixel (Rows/Columns) and geodetic (Latitude/Longitude) coordinates are present, pixel takes precedence

Required Columns (Choose One Coordinate System)

Column Name Data Type Description Example
Track string Unique identifier for the track "Tracker 0 - Track 0"
Temporal (choose one):
Frames int Frame number where this point appears 15
Times string (ISO 8601) Timestamp for this point "2024-01-01T12:00:00.000000"
Spatial (choose one):
Rows + Columns float Pixel coordinates in image 181.87, 79.08
Latitude + Longitude + Altitude float Geodetic coordinates 40.0128, -105.0156, 1500.0

Optional Columns

Column Name Data Type Default Description Valid Values
Color string 'g' Track color 'r', 'g', 'b', 'w', 'c', 'm', 'y', 'k'
Marker string 'o' Current position marker style 'o' (circle), 's' (square), 't' (triangle), 'd' (diamond), '+', 'x', 'star'
Line Width float 2 Width of track path line Any positive number
Marker Size float 12 Size of position marker Any positive number
Tail Length int 0 Number of recent frames to show (0 = all) Any non-negative integer
Visible bool True Track visibility True/False
Complete bool False Show complete track regardless of current frame True/False
Tracker string (none) Name of tracker/algorithm Any string

Example CSV Files

Standard Format (Frames + Pixel Coordinates):

Track,Frames,Rows,Columns,Color,Marker,Line Width,Marker Size,Tracker
"Tracker 0 - Track 0",15,181.87,79.08,g,o,2,12,"Tracker 0"
"Tracker 0 - Track 0",16,183.67,77.35,g,o,2,12,"Tracker 0"
"Tracker 0 - Track 0",17,185.23,75.89,g,o,2,12,"Tracker 0"

Time-Based Format:

Track,Times,Rows,Columns,Color,Marker,Line Width,Marker Size
"Track 1",2024-01-01T12:00:00.000000,181.87,79.08,g,o,2,12
"Track 1",2024-01-01T12:00:00.100000,183.67,77.35,g,o,2,12
"Track 1",2024-01-01T12:00:00.200000,185.23,75.89,g,o,2,12

Geodetic Format:

Track,Frames,Latitude (deg),Longitude (deg),Altitude (km),Color
"Track 1",0,40.0128,-105.0156,0.0,g
"Track 1",1,40.0129,-105.0157,0.0,g
"Track 1",2,40.0130,-105.0158,0.0,g

Time + Geodetic Format:

Track,Times,Latitude (deg),Longitude (deg),Altitude (km)
"Track 1",2024-01-01T12:00:00.000000,40.0128,-105.0156,0.0
"Track 1",2024-01-01T12:00:00.100000,40.0129,-105.0157,0.0
"Track 1",2024-01-01T12:00:00.200000,40.0130,-105.0158,0.0

When loading tracks that require conversion (time-to-frame or geodetic-to-pixel), VISTA will automatically prompt you to select an appropriate imagery dataset with the required metadata.

Detection Data (CSV Format)

Detection files represent point clouds of detected objects at each frame.

Required Columns

Column Name Data Type Description Example
Detector string Identifier for the detector/algorithm "Detector 0"
Frames float Frame number where detection occurs 0.0
Rows float Row position in image coordinates 146.01
Columns float Column position in image coordinates 50.27

Optional Columns

Column Name Data Type Default Description Valid Values
Color string 'r' Detection marker color 'r', 'g', 'b', 'w', 'c', 'm', 'y', 'k'
Marker string 'o' Marker style 'o', 's', 't', 'd', '+', 'x', 'star'
Marker Size float 10 Size of marker Any positive number
Line Thickness int 2 Thickness of marker outline Any positive integer
Visible bool True Detection visibility True/False

Example CSV

Detector,Frames,Rows,Columns,Color,Marker,Marker Size,Line Thickness
"Detector 0",0.0,146.01,50.27,r,o,10,2
"Detector 0",0.0,141.66,25.02,r,o,10,2
"Detector 0",1.0,148.23,51.15,r,o,10,2
"CFAR Detector",0.0,200.45,300.12,b,s,12,3

Usage

Launching the Application

If installed via pip:

vista

Or using Python module syntax:

python -m vista

Loading Data

  1. Load Imagery:

    • Menu: File → Load Imagery or Toolbar icon
    • Select HDF5 file with imagery data
    • Multiple imagery datasets supported (must have unique names)
  2. Load Tracks:

    • Menu: File → Load Tracks or Toolbar icon
    • Select CSV file with track data
    • If tracks contain times or geodetic coordinates, select appropriate imagery for conversion
    • System detects coordinate system automatically
  3. Load Detections:

    • Menu: File → Load Detections or Toolbar icon
    • Select CSV file with detection data

Programmatic Usage

VISTA can be used programmatically to visualize data created in memory, which is useful for debugging workflows, interactive analysis, and Jupyter notebooks.

Basic Usage

from vista.app import VistaApp
from vista.imagery.imagery import Imagery
import numpy as np

# Create imagery in memory
images = np.random.rand(10, 256, 256).astype(np.float32)
frames = np.arange(10)
imagery = Imagery(name="Debug Data", images=images, frames=frames)

# Launch VISTA with the imagery
app = VistaApp(imagery=imagery)
app.exec()

Loading Multiple Data Types

from vista.app import VistaApp
from vista.imagery.imagery import Imagery
from vista.detections.detector import Detector
from vista.tracks.tracker import Tracker
from vista.tracks.track import Track
import numpy as np

# Create imagery
images = np.random.rand(50, 256, 256).astype(np.float32)
imagery = Imagery(name="Example", images=images, frames=np.arange(50))

# Create detections
detector = Detector(
    name="My Detections",
    frames=np.array([0, 1, 2, 5, 10]),
    rows=np.array([128.5, 130.2, 132.1, 135.0, 140.5]),
    columns=np.array([100.5, 102.3, 104.1, 106.5, 110.2]),
    color='r',
    marker='o',
    visible=True
)

# Create tracks
track = Track(
    name="Track 1",
    frames=np.array([0, 1, 2, 3, 4]),
    rows=np.array([128.5, 130.0, 131.5, 133.0, 134.5]),
    columns=np.array([100.5, 101.5, 102.5, 103.5, 104.5]),
    color='g',
    marker='s'
)
tracker = Tracker(name="My Tracker", tracks=[track])

# Launch VISTA with all data
app = VistaApp(imagery=imagery, detections=detector, tracks=tracker)
app.exec()

Loading Multiple Objects

You can pass lists of imagery, detections, or tracks:

app = VistaApp(
    imagery=[imagery1, imagery2],
    detections=[detector1, detector2],
    tracks=[tracker1, tracker2]
)
app.exec()

Jupyter Notebook Usage

In Jupyter notebooks, you may need to handle the event loop differently depending on your environment. The basic usage works in most cases:

# In a Jupyter notebook cell
from vista.app import VistaApp
import numpy as np
from vista.imagery.imagery import Imagery

images = np.random.rand(10, 256, 256).astype(np.float32)
imagery = Imagery(name="Notebook Data", images=images, frames=np.arange(10))

app = VistaApp(imagery=imagery)
app.exec()  # Window will open; close it to continue notebook execution

Example Script: See scripts/example_programmatic_loading.py for a complete working example that creates synthetic imagery with a moving bright spot, detections, and tracks.

Creating and Editing Manual Tracks and Detections

VISTA provides powerful tools for manual track and detection creation with intelligent point placement.

Point Selection Modes

When creating or editing tracks/detections, a Point Selection Dialog appears with three modes for determining point locations:

1. Verbatim Mode

  • Uses the exact pixel location where you click
  • Best for: Precise manual placement with full control
  • No automatic adjustments

2. Peak Mode

  • Automatically finds the brightest pixel within a configurable radius of your click
  • Configurable Parameters:
    • Search Radius: 1-50 pixels (default: 5)
  • Best for: Bright objects like stars, satellites, or aircraft
  • Points are placed at pixel center (+0.5 offset) for sub-pixel accuracy

3. CFAR Mode

  • Runs CFAR detection algorithm in a local region around your click
  • Finds the centroid of the detected signal blob
  • Configurable Parameters:
    • Search Radius: 10-200 pixels (defines local processing area)
    • Background Radius: Outer radius for neighborhood statistics
    • Ignore Radius: Inner radius excluded from statistics
    • Threshold Deviation: Number of standard deviations for detection
    • Annulus Shape: Circular or Square neighborhood
    • Detection Mode: Above (bright), Below (dark), or Both
    • Includes visual preview of CFAR annulus
  • Best for: Precise blob centroid location in varying backgrounds
  • All settings persist across sessions

Creating Manual Tracks

  1. Enable Track Creation Mode:

    • Click the "Create Track" icon in the toolbar
    • The Point Selection Dialog appears automatically
  2. Configure Point Selection:

    • Choose your preferred mode (Verbatim, Peak, or CFAR) by selecting the appropriate tab
    • Adjust parameters as needed
    • Settings are saved and remembered for future use
  3. Create Track Points:

    • Click on the imagery to add points to the current track
    • The point location is refined based on your selected mode
    • Each click creates a new point at the current frame
    • Click near an existing point to remove it
  4. Navigate and Add Points:

    • Change frames using playback controls, arrow keys, or A/D keys
    • Continue clicking to add points at different frames
    • The system tracks which frame each point belongs to
    • Temporary visualization shows your track as you build it
  5. Finish Track:

    • Click "Finish Track" in the dialog to save
    • The new track is added to the Data Manager
    • Point Selection Dialog closes automatically

Editing Existing Tracks

  1. Enable Track Editing Mode:

    • In the Data Manager's Tracks panel, select a track
    • Click the "Edit Track" button
    • The Point Selection Dialog appears with current track data
  2. Modify Track Points:

    • Navigate to any frame and click to add new points
    • Click near existing points to remove them
    • Use your preferred point selection mode for precise placement
  3. Finish Editing:

    • Click "Finish Editing" to save changes
    • Updated track appears in the Data Manager

Creating and Editing Manual Detections

The same workflow applies to detections:

  1. Create Detections: Use "Create Detection" toolbar icon
  2. Edit Detections: Select detector in Data Manager and click "Edit Detection"
  3. Add Multiple Points: Unlike tracks, you can add multiple detection points per frame
  4. Point Selection: All three modes (Verbatim, Peak, CFAR) work identically for detections

Managing Track and Detection Labels

VISTA provides a flexible labeling system for organizing, classifying, and filtering tracks and detections. This is useful for ground truth annotation, classification workflows, and analyst review.

Opening the Labels Manager

Menu Path: Labels (in menu bar)

The Labels Manager provides centralized control over all labels in your project:

  • View all labels: See all labels currently defined in the project
  • Create new labels: Add custom labels for your classification scheme
  • Rename labels: Update label names (automatically updates all assigned labels)
  • Delete labels: Remove labels (automatically removes from all assigned tracks/detections)
  • See label usage: View which tracks and detections are assigned each label

Assigning Labels to Tracks

  1. Open the Data Manager: Ensure the Tracks tab is selected
  2. Select tracks: Click on one or more tracks in the table (use Ctrl/Cmd for multiple selection)
  3. Assign label:
    • Right-click on selected tracks
    • Choose "Assign Label" from context menu
    • Select an existing label or create a new one
  4. Verify assignment: The "Label" column shows the assigned label for each track

Assigning Labels to Detections

  1. Open the Data Manager: Ensure the Detections tab is selected
  2. Select detections: Click on one or more detections in the table
  3. Assign label: Use the same workflow as tracks (right-click → "Assign Label")
  4. Bulk assignment: Select multiple detections to assign the same label to all

Filtering by Label

In the Tracks Panel:

  1. Click the "Label" column header dropdown filter
  2. Select which labels to display (supports multiple label selection)
  3. Table updates to show only tracks with selected labels
  4. Clear filter to show all tracks again

In the Detections Panel:

  1. Use the same filtering workflow as tracks
  2. Quickly isolate detections by classification
  3. Useful for reviewing specific object types or classes

Label Persistence

  • Labels are saved automatically with track and detection data
  • When exporting tracks/detections to CSV, labels are included in the "Label" column
  • When loading CSV files with a "Label" column, labels are automatically imported
  • Labels persist across VISTA sessions

Pre-configured Labels via Environment Variable

The VISTA_LABELS environment variable allows you to pre-configure labels that will be automatically loaded when VISTA starts. This is useful for:

  • Establishing consistent labeling schemes across teams
  • Setting up standardized classification workflows
  • Automating label setup in scripts or CI/CD pipelines

Supported Formats:

  1. CSV File Path: Point to a CSV file containing labels

    export VISTA_LABELS="/path/to/labels.csv"

    CSV format with header:

    label
    Aircraft
    Satellite
    Bird
    Debris
    

    Or simple format (one label per line):

    Aircraft
    Satellite
    Bird
    Debris
    
  2. JSON File Path: Point to a JSON file containing an array of labels

    export VISTA_LABELS="/path/to/labels.json"

    JSON format:

    ["Aircraft", "Satellite", "Bird", "Debris"]
  3. Comma-Separated Values: Specify labels directly in the environment variable

    export VISTA_LABELS="Aircraft,Satellite,Bird,Debris"

Behavior:

  • Fixture labels are merged with any existing labels in VISTA's settings
  • Duplicate labels are ignored (case-insensitive comparison)
  • Once merged, labels are persisted to settings and remain available even if the environment variable is removed
  • Labels can still be managed (added/deleted) through the Labels Manager UI

Common Labeling Workflows

Ground Truth Annotation:

  1. Load automated tracker results
  2. Review each track and assign labels: "True Positive", "False Positive", "Missed Detection"
  3. Filter by label to review each category
  4. Export labeled data for algorithm validation

Multi-Class Classification:

  1. Create labels for each object class: "Aircraft", "Satellite", "Bird", "Debris"
  2. Assign labels to detections or tracks as you review
  3. Use label filtering to focus on specific classes
  4. Generate classification statistics by counting labels

Analyst Review:

  1. Create labels for review status: "Reviewed", "Needs Review", "Uncertain"
  2. Assign labels during manual review process
  3. Filter by "Needs Review" to see remaining work
  4. Track review progress through label counts

Drawing Areas of Interest (AOI)

AOIs allow you to define rectangular regions for focused algorithm processing (background removal, treatments, etc.).

Creating an AOI:

  1. Access the Draw AOI Tool:

    • Right-click on the imagery viewer
    • Select "Draw AOI" from the context menu
  2. Draw the Rectangle:

    • Click and drag to define the rectangular region
    • The AOI is created immediately upon mouse release
  3. Use AOI in Algorithms:

    • Many algorithms (Temporal Median, Robust PCA, Bias Removal, NUC) support AOI selection
    • Select your AOI from the dropdown in the algorithm dialog
    • Processing is restricted to the selected region
    • Output imagery inherits the AOI boundaries (with row/column offsets)

Managing AOIs:

  • AOIs appear in the Data Manager
  • Toggle visibility to show/hide AOI rectangles on the display
  • Delete unwanted AOIs from the Data Manager

Detection Algorithms

Running CFAR Detector

Menu Path: Detections → CFAR

Parameters:

  • Detection Threshold: SNR threshold for detections (default: 3.0)
  • Guard Window Radius: Size of guard region around test cell (default: 2)
  • Background Window Radius: Size of background estimation region (default: 5)
  • Detection Mode: Controls what type of objects to detect (default: 'above')
    • 'above': Detect bright objects (pixel > mean + threshold × std)
    • 'below': Detect dark objects (pixel < mean - threshold × std)
    • 'both': Detect absolute deviations (|pixel - mean| > threshold × std)

Output: Creates a new detector with CFAR detections

Running Simple Threshold Detector

Menu Path: Detections → Simple Threshold

Parameters:

  • Threshold: Intensity threshold value (default: 5.0)
  • Detection Mode: Controls what type of objects to detect (default: 'above')
    • 'above': Detect positive values (pixel > threshold)
    • 'below': Detect negative values (pixel < -threshold, useful for background-removed imagery)
    • 'both': Detect absolute values (|pixel| > threshold)

Output: Creates a new detector with threshold-based detections

Tracking Algorithms

All tracking algorithms take detections as input and produce tracks as output.

Simple Tracker

Menu Path: Tracking → Simple Tracker

Description: Nearest-neighbor association with maximum distance threshold

Parameters:

  • Maximum Distance: Maximum pixel distance for associating detections to tracks (default: 50.0)

Kalman Filter Tracker

Menu Path: Tracking → Kalman Tracker

Description: State estimation with constant velocity motion model

Parameters:

  • Maximum Distance: Maximum distance for data association (default: 50.0)
  • Process Noise: Motion model uncertainty (default: 1.0)
  • Measurement Noise: Detection position uncertainty (default: 5.0)

Network Flow Tracker

Menu Path: Tracking → Network Flow Tracker

Description: Global optimization using min-cost flow

Parameters:

  • Maximum Distance: Maximum distance for associations (default: 50.0)
  • Miss Penalty: Cost for missing detections (default: 10.0)
  • False Alarm Penalty: Cost for false alarm detections (default: 10.0)

Tracklet Tracker

Menu Path: Tracking → Tracklet Tracker

Description: Two-stage hierarchical tracker optimized for high false alarm scenarios (100:1 or higher)

Stage 1 Parameters (Tracklet Formation):

  • Initial Search Radius: Maximum distance for forming tracklets (default: 10.0 pixels)
  • Max Velocity Change: Maximum allowed velocity change for smooth motion (default: 5.0 pixels/frame)
  • Min Tracklet Length: Minimum detections required to save a tracklet (default: 3)
  • Max Consecutive Misses: Maximum frames without detection before ending tracklet (default: 2)
  • Min Detection Rate: Minimum hit-to-age ratio for valid tracklets (default: 0.6)

Stage 2 Parameters (Tracklet Linking):

  • Max Linking Gap: Maximum frame gap when linking tracklets (default: 10 frames)
  • Linking Search Radius: Maximum distance for linking tracklets (default: 30.0 pixels)

Best for: Scenarios with smooth target motion and high clutter/false alarm rates

Image Enhancement

Coaddition

Menu Path: Image Processing → Enhancement → Coaddition

Description: Temporal averaging for noise reduction and SNR improvement

Parameters:

  • Number of Frames: Number of frames to average (default: 5)

Output: New imagery dataset with enhanced frames

Background Removal

Temporal Median

Menu Path: Image Processing → Background Removal → Temporal Median

Parameters:

  • Background Frames: Number of frames on each side for median (default: 5)
  • Temporal Offset: Frames to skip around current frame (default: 2)
  • Start Frame / End Frame: Frame range to process
  • AOI Selection: Optional area of interest to process (default: Full Image)

Output: New imagery dataset with background removed

Robust PCA

Menu Path: Image Processing → Background Removal → Robust PCA

Description: Decomposes imagery into low-rank (background) and sparse (foreground) components using Principal Component Pursuit (PCP).

Parameters:

  • Lambda Parameter: Sparsity parameter controlling background/foreground separation (default: auto-calculated as 1/sqrt(max(m,n)))
  • Tolerance: Convergence tolerance (default: 1e-7)
  • Max Iterations: Maximum optimization iterations (default: 1000)
  • Start Frame / End Frame: Frame range to process
  • AOI Selection: Optional area of interest to process (default: Full Image)
  • Add Background: Option to add background component to data manager
  • Add Foreground: Option to add foreground component to data manager

Output: Two new imagery datasets - low-rank background and sparse foreground components

Image Treatments

Bias Removal

Menu Path: Image Processing → Treatments → Bias Removal

Description: Apply bias/dark frame correction using sensor calibration data

Parameters:

  • AOI Selection: Optional area of interest to process (default: Full Image)

Requirements:

  • Imagery must contain bias_images and bias_image_frames datasets

Output: New imagery dataset with bias frames subtracted

Non-Uniformity Correction (NUC)

Menu Path: Image Processing → Treatments → Non-Uniformity Correction

Description: Apply flat-field gain correction to correct pixel-to-pixel response variations

Parameters:

  • AOI Selection: Optional area of interest to process (default: Full Image)

Requirements:

  • Imagery must contain uniformity_gain_images and uniformity_gain_image_frames datasets

Output: New imagery dataset with uniformity correction applied

Playback Controls

Control Description
Play/Pause Start/stop playback
FPS Slider Adjust playback speed (-100 to +100 FPS, negative for reverse)
Frame Slider Navigate to specific frame
Bounce Mode Toggle looping playback between current frame range
Arrow Keys Previous/Next frame navigation
A/D Keys Previous/Next frame navigation (alternative)

Keyboard Shortcuts

VISTA provides convenient keyboard shortcuts for efficient navigation and control:

Shortcut Action Description
Left Arrow or A Previous Frame Navigate backward one frame in the sequence
Right Arrow or D Next Frame Navigate forward one frame in the sequence
Spacebar Play/Pause Toggle playback on/off

Notes:

  • Keyboard shortcuts work when the main window has focus
  • The A and D keys provide an alternative to arrow keys, useful when your hand is on the mouse
  • Use Spacebar for quick playback control without reaching for the play button
  • During playback, use the FPS slider to control playback speed (supports negative values for reverse playback)

Generating Test Data

Users can create simulated data to get familiar with the tool by clicking File > Simulate.

use the simulation module to generate test datasets with various configurations:

from vista.simulate.simulation import Simulation
import numpy as np

# Standard simulation
sim = Simulation(
    name="Test Simulation",
    frames=50,
    rows=256,
    columns=256,
    num_trackers=1
)
sim.simulate()
sim.save("test_data")

# Simulation with times and geodetic coordinates
sim = Simulation(
    name="Advanced Simulation",
    frames=50,
    enable_times=True,
    frame_rate=10.0,
    start_time=np.datetime64('2024-01-01T12:00:00', 'us'),
    enable_geodetic=True,
    center_lat=40.0,
    center_lon=-105.0,
    pixel_to_deg_scale=0.0001
)
sim.simulate()

# Simulation with sensor calibration data
sim = Simulation(
    name="Calibrated Simulation",
    frames=100,
    rows=256,
    columns=256,
    # Enable sensor calibration features
    enable_bias_images=True,
    num_bias_images=2,
    bias_value_range=(0.5, 2.0),
    enable_uniformity_gain=True,
    num_uniformity_gains=2,
    enable_bad_pixel_masks=True,
    num_bad_pixel_masks=2,
    bad_pixel_fraction=0.01,
    enable_radiometric_gain=True,
    radiometric_gain_mean=1.0,
    radiometric_gain_std=0.05
)
sim.simulate()
sim.save("calibrated_data")

# Simulation with Earth background
sim = Simulation(
    name="Earth Background Simulation",
    frames=50,
    rows=256,
    columns=256,
    enable_earth_background=True,
    earth_jitter_std=2.0,  # Platform jitter in pixels
    earth_scale=1.0  # Scale factor for Earth image intensity
)
sim.simulate()
sim.save("earth_sim")

# Save with different coordinate systems
sim.save("time_based", save_times_only=True)  # Times only
sim.save("geodetic", save_geodetic_tracks=True)  # Geodetic only
sim.save("time_geodetic", save_geodetic_tracks=True, save_times_only=True)  # Both

Pre-configured Test Scenarios

Use the example scripts to generate comprehensive test data:

Generate all coordinate system variations:

python scripts/example_geodetic_time.py

This creates 5 directories with different test configurations:

  • sim_normal/ - Standard tracks (Frames + Rows/Columns)
  • sim_times_only/ - Time-based tracks
  • sim_geodetic_only/ - Geodetic tracks
  • sim_times_geodetic/ - Time + Geodetic
  • sim_all_features/ - All features combined

Generate comprehensive test data with all features:

python scripts/create_comprehensive_data.py

This creates 5 directories demonstrating different feature sets:

  • sim_basic/ - Basic simulation with minimal features
  • sim_with_times/ - Time-based metadata
  • sim_with_geodetic/ - Geodetic coordinate conversion
  • sim_with_calibration/ - Sensor calibration data (bias, gain, bad pixels, radiometric gain)
  • sim_all_features/ - Complete feature set including Earth background, calibration data, times, and geodetic support

Project Structure

Vista/
├── vista/
│   ├── app.py                       # Main application entry point
│   ├── widgets/
│   │   ├── core/                    # Core UI components
│   │   │   ├── main_window.py       # Main window with menu/toolbar
│   │   │   ├── imagery_viewer.py    # Image display with pyqtgraph
│   │   │   ├── playback_controls.py # Playback UI
│   │   │   ├── imagery_selection_dialog.py  # Imagery picker for conversions
│   │   │   ├── point_selection_dialog.py    # Point selection mode dialog
│   │   │   └── data/
│   │   │       ├── data_manager.py  # Data panel with editing
│   │   │       ├── data_loader.py   # Background loading thread
│   │   │       ├── tracks_panel.py  # Track editing panel
│   │   │       └── detections_panel.py  # Detection editing panel
|   |   ├── algorithms/             
│   │   |   ├── detectors/                      # Detection algorithm widgets
│   │   |   │   ├── cfar_widget.py              # CFAR detector UI
│   │   |   │   ├── cfar_config_widget.py       # Reusable CFAR configuration widget
│   │   |   │   └── simple_threshold_widget.py  # Threshold detector UI
│   │   |   ├── trackers/                       # Tracking algorithm widgets
│   │   |   │   ├── simple_tracking_dialog.py
│   │   |   │   ├── kalman_tracking_dialog.py
│   │   |   │   ├── network_flow_tracking_dialog.py
│   │   |   │   └── tracklet_tracking_dialog.py
│   │   |   ├── background_removal/             # Background removal widgets
│   │   |   │   ├── temporal_median_widget.py
│   │   |   │   └── robust_pca_dialog.py
│   │   |   ├── enhancement/                    # Enhancement widgets
│   │   |   │   └── coaddition_widget.py
│   │   |   └── treatments/                     # Sensor calibration widgets
│   │   |       ├── bias_removal.py
│   │   |       └── non_uniformity_correction.py
│   ├── imagery/                     # Image data models
│   │   └── imagery.py               # Imagery class with geodetic support
│   ├── tracks/                      # Track data models
│   │   ├── track.py                 # Track class with coordinate conversion
│   │   └── tracker.py               # Tracker container
│   ├── detections/                  # Detection data models
│   │   └── detector.py              # Detector class
│   ├── algorithms/                  # Image processing algorithms
│   │   ├── background_removal/
│   │   │   ├── temporal_median.py
│   │   │   └── robust_pca.py
│   │   ├── detectors/
│   │   │   ├── cfar.py
│   │   │   └── threshold.py
│   │   ├── trackers/
│   │   │   ├── simple_tracker.py
│   │   │   ├── kalman_tracker.py
│   │   │   ├── network_flow_tracker.py
│   │   │   └── tracklet_tracker.py
│   │   └── enhancement/
│   │       └── coadd.py
│   ├── aoi/                         # Area of Interest support
│   │   └── aoi.py                   # AOI data model
│   ├── sensors/                     # Sensor calibration models
│   │   ├── sensor.py                # Base sensor class
│   │   └── sampled_sensor.py        # Sampled sensor implementation
│   ├── utils/                       # Utilities
│   │   ├── color.py                 # Color conversion helpers
│   │   ├── random_walk.py           # Random walk simulation
│   │   ├── time_mapping.py          # Time-to-frame conversion
│   │   ├── geodetic_mapping.py      # Geodetic-to-pixel conversion
│   │   └── point_refinement.py      # Point selection algorithms
│   ├── simulate/                    # Data generation utilities
│   │   ├── simulation.py            # Synthetic data simulator
│   │   └── data.py                  # Earth image and other simulation data
│   └── icons/                       # Application icons
├── scripts/                         # Example scripts
│   ├── example_geodetic_time.py     # Generate coordinate system test data
│   ├── create_comprehensive_data.py # Generate comprehensive test data with all features
│   └── example_programmatic_loading.py  # Programmatic API usage example
├── data/                            # Example datasets (gitignored)
├── pyproject.toml                   # Package configuration and dependencies
└── readme.md                        # This file

Architecture

Design Principles

  1. Data-View Separation: Imagery, Track, and Detector classes are independent data containers
  2. Async Loading: Background threads prevent UI freezing during file I/O
  3. Signal-Slot Communication: PyQt signals coordinate between components
  4. Pre-Compute Expensive Operations for Speed: Image histograms are computed for all images rather than computed on the fly.
  5. Automatic Conversion: Transparent coordinate and time conversion with user prompts
  6. Extensibility: Modular algorithm framework for custom processing

Key Classes

  • Imagery: Image data with optional times and geodetic polynomials
  • Track: Single trajectory with automatic coordinate conversion
  • Tracker: Container for multiple tracks
  • Detector: Point cloud detection class with styling
  • ImageryViewer: Visualization widget with interactive tools
  • PlaybackControls: Temporal control widget
  • DataManagerPanel: Data editing and management widget

Performance Considerations

  • Chunked HDF5: Use chunked storage for large imagery files to enable progressive loading
  • Lazy Computations: Coordinate conversions computed on-demand
  • Efficient Playback: Bounce mode uses efficient frame looping
  • Background Processing: All file I/O and algorithms run in background threads
  • Memory Management: Large datasets may require significant memory for processing
  • Frame Synchronization: Assumes synchronized frame numbers across imagery datasets

Troubleshooting

Track Loading Issues

"No imagery with times defined"

  • Ensure imagery contains unix_time and unix_fine_time datasets
  • Load imagery before loading time-based tracks

"No imagery with geodetic conversion capability"

  • Ensure imagery contains all four polynomial datasets
  • Check that polynomials have correct shape (N_frames, 15)

"Track has times but no frames"

  • Imagery required for time-to-frame mapping
  • Verify imagery times overlap with track times

Coordinate Conversion Issues

Tracks appear in wrong location

  • Verify polynomial coefficients are correct
  • Check that geodetic coordinates are within imagery coverage area
  • Ensure frame synchronization across imagery datasets

General Issues

Duplicate Imagery Names

  • Each loaded imagery dataset must have a unique name

Slow Playback

  • Reduce FPS slider value
  • Use smaller imagery datasets or chunked HDF5

Out of Memory

  • Close unused imagery datasets
  • Reduce algorithm parameter values (e.g., background frames)

Contributing

Contributions are welcome! Please feel free to submit issues or pull requests.

Building an Executable

Users can build an executable version of this tool with pyinstaller using the commands below:

Windows:

pyinstaller vista/app.py --onefile -n vista --icon=vista/icons/logo.ico --hidden-import pyqtgraph.graphicsItems.PlotItem.plotConfigTemplate_pyqt6 --hidden-import pyqtgraph.imageview.ImageViewTemplate_pyqt6 --hidden-import pyqtgraph.graphicsItems.ViewBox.axisCtrlTemplate_pyqt6 --add-data="vista/icons*;vista" --add-data="vista/simulate/data*;vista"

MacOS/Linux:

pyinstaller vista/app.py --onefile --windowed -n vista --icon=vista/icons/logo.icns --hidden-import pyqtgraph.graphicsItems.PlotItem.plotConfigTemplate_pyqt6 --hidden-import pyqtgraph.imageview.ImageViewTemplate_pyqt6 --hidden-import pyqtgraph.graphicsItems.ViewBox.axisCtrlTemplate_pyqt6 --add-data="vista/icons:vista/icons/" --add-data="vista/simulate/data:vista/simulate/data/"

License

MIT License

Acknowledgments

VISTA uses the following open-source libraries:

  • PyQt6 for the GUI framework
  • pyqtgraph for high-performance visualization
  • NumPy and pandas for data processing
  • astropy for geodetic coordinate handling
  • scikit-learn for machine learning algorithms
  • cvxpy for optimization (Network Flow Tracker)
  • h5py for HDF5 file support
  • Pillow for image processing (Earth background simulation)

About

Visual Imagery Software Tool for Analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages