A full-stack conversational AI starter kit built with Amazon Bedrock AgentCore, Strands Agents SDK, FastAPI, and htmx. This project is used for rapid prototyping of agentic applications. It accelerates proof-of-concept development with built-in telemetry capture, usage analytics, and cost projections.
Skip weeks of infrastructure setup and go straight to validating your agentic AI use case. This starter provides everything you need to move from idea to production-ready POC:
- Production-grade infrastructure in minutes — Deploy a complete agentic AI stack (auth, memory, guardrails, knowledge base, analytics) with a single CDK command, eliminating weeks of boilerplate development
- Built-in cost intelligence — Track token usage, runtime costs, and tool invocations with projections to forecast production spending before you scale
- Flexible deployment options — Choose between always-on ECS (~$46/mo) or serverless Lambda Web Adapter (~$12/mo) based on your traffic patterns and budget
- Extensible agent framework — Add custom tools, swap models, integrate your own knowledge base, and customize the UI without rebuilding core infrastructure
Chat Experience
- 🤖 AI-powered conversational agent with short-term (STM) and long-term memory (LTM)
- ⚡ Real-time streaming with token-by-token SSE responses and embedded memory viewer
- 📝 Prompt templates for quick access to pre-defined prompts
- 🎨 Customizable branding - title, logos, and theme colors
POC Analytics & Insights
- 📊 Admin dashboard with usage analytics and cost tracking
- 💰 Cost projections based on actual usage patterns (token + runtime costs)
- 👍 User feedback capture with sentiment ratings and comments
- 🛡️ Guardrails analytics with violation tracking and content filtering
- 🔧 Tool usage analytics with per-tool invocation metrics and success rates
Agent Capabilities
- 🧠 Amazon Bedrock AgentCore with Strands Agents SDK
- 📚 Knowledge Base integration for semantic search over your documents (S3 Vectors)
- 🛠️ Pre-built tools - web search, URL fetcher, weather, calculator, current time
Infrastructure
- ☁️ Flexible deployment options - ECS Express Mode or CloudFront + Lambda Web Adapter
- 💸 Cost-optimized - Serverless options with pay-per-use pricing
- 🔐 Cognito authentication with secure token management
- 📡 OpenTelemetry and Bedrock AgentCore Observability with logs, traces, and metrics
The built-in admin dashboard (/admin) provides comprehensive usage analytics:
|
📊 Dashboard Overview
|
🔢 Token Usage
|
|
💬 Chat History
|
📋 Session Details
|
|
👍 Feedback Analytics
|
👥 User Analytics
|
|
🛡️ Guardrails Analytics
|
🔧 Tool Analytics
|
|
📝 Prompt Templates
|
🎨 Application Settings
|
The application supports two ingress modes for the FastAPI application: ECS Express Gateway (serverless container) or CloudFront + Lambda Web Adapter (serverless function with edge distribution).
┌─────────────────┐ ┌─────────────────────────────────┐ ┌─────────────────┐
│ │ │ ECS Express (Fargate) │ │ │
│ Browser │ │ - or - │ │ Guardrails │
│ Chat + Admin │◀────▶│ CloudFront + Lambda Web Adapter│◀────▶│ (Bedrock) │
│ │ SSE │ │ │ │
└─────────────────┘ │ FastAPI │ └─────────────────┘
│ └─────────────────────────────────┘ │
│ │ │
│ ▼ ▼
│ ┌─────────────────┐ ┌─────────────────┐
│ │ DynamoDB │ │ AgentCore │
│ │ Usage/Feedback │ │ Runtime │
│ │ Runtime Usage │ │ Strands Agent │
│ └─────────────────┘ └─────────────────┘
│ ▲ │ │ │
│ │ │ │ │
│ ┌──────┴──────┐ │ │ │
│ │ Lambda │ │ │ │
│ │ Transform │ ▼ │ ▼
│ └─────────────┘ ┌───────────┐ │ ┌───────────┐
│ ▲ │ Bedrock │ │ │ AgentCore │
│ ┌──────┴──────┐ │ LLM │ │ │ Memory │
│ │ Firehose │ └───────────┘ │ └───────────┘
▼ └─────────────┘ │
┌─────────────────┐ ▲ │
│ Cognito │ │ │
│ Auth │ └─────────────────────────────────┘
└─────────────────┘ USAGE_LOGS
| Tool | Minimum Version | Purpose |
|---|---|---|
| Node.js | 18.x+ | CDK runtime |
| AWS CDK CLI | 2.x | Infrastructure deployment |
| AWS CLI | 2.x | AWS resource management |
Install CDK CLI globally:
npm install -g aws-cdkNote: Docker is not required locally - all container builds are handled by AWS CodeBuild.
- AWS Account with a Default VPC
- IAM permissions with access to Bedrock, Bedrock AgentCore, ECS, Cognito, ECR, DynamoDB, Secrets Manager
-
Clone the repository:
git clone https://github.com/aws-samples/sample-strands-agentcore-starter cd sample-strands-agentcore-starter -
Install CDK dependencies:
cd cdk npm install -
Deploy all stacks:
./deploy-all.sh --region <aws-region-id>
-
Create a test user (add
--adminfor admin access):cd ../chatapp/scripts ./create-user.sh your-email@example.com YourPassword123@ --admin -
Wait for deployment (5-10 minutes for ECS, 3-4 minutes for Lambda), then access the URL shown in the deployment output.
The deployment creates:
- Cognito User Pool for authentication
- DynamoDB tables for usage analytics, feedback, and guardrails
- Bedrock Guardrail for content filtering
- Bedrock Knowledge Base with S3 Vectors
- AgentCore Memory with LTM strategies
- AgentCore Runtime with the deployed agent
- ChatApp ingress (ECS Express Mode and/or CloudFront + Lambda Web Adapter based on --ingress flag)
The application supports three ingress modes for different use cases and cost profiles:
| Mode | Description | Monthly Cost | Use Case |
|---|---|---|---|
| ecs | ECS Express Gateway - Always-on container service | ~$46 | Production workloads, consistent traffic, no cold starts |
| furl (default) | CloudFront + Lambda Web Adapter - Serverless pay-per-use with edge distribution | ~$12 | Development, PoC, sporadic usage, cost optimization |
| both | Deploy both simultaneously | ~$58 | A/B testing, migration, redundancy |
./deploy-all.sh [options]
Options:
--region <region> AWS region (default: us-east-1)
--profile <profile> AWS CLI profile to use
--ingress <mode> Ingress mode: ecs, furl, or both (default: ecs)
--dry-run Show what would be deployed without deploying# Deploy with ECS Express Gateway
./deploy-all.sh --region us-east-1 --ingress ecs
# Deploy with CloudFront + Lambda Web Adapter (default)
./deploy-all.sh --region us-east-1 --ingress furl
# Deploy both ECS and Lambda simultaneously
./deploy-all.sh --region us-east-1 --ingress bothECS Mode (~$44/month):
- ECS Fargate: ~$18/mo (0.5 vCPU, 1GB RAM, always-on)
- Application Load Balancer: ~$16.20/mo (managed by Express Gateway)
- IPv4 addresses: ~$10.95/mo (3 ALB IPs across AZs + 1 task ENI)
- Data transfer: ~$0.50/mo
Lambda Web Adapter Mode (~$12/month typical):
- CloudFront distribution: ~$1.00/mo (1M requests)
- Lambda compute: ~$10/mo (10,000 requests/day @ 1GB/2s avg)
- Lambda@Edge: ~$0.50/mo (payload hash computation)
- Data transfer: ~$0.60/mo
- No charges for: IPv4, ALB, or idle time
- Cold starts: First request after idle may take 3-5 seconds
Both Mode: Combines costs of both deployment modes
The CDK deployment creates 4 consolidated CloudFormation stacks:
| Stack | Description | Key Resources |
|---|---|---|
| Foundation | Auth, Storage, IAM, Secrets | Cognito, DynamoDB tables, ECS roles, Secrets Manager |
| Bedrock | AI/ML Resources | Guardrail, Knowledge Base (S3 Vectors), AgentCore Memory |
| Agent | Agent Infrastructure | ECR, CodeBuild, AgentCore Runtime, Observability |
| ChatApp | Application | ECR, CodeBuild, S3 source, ECS Express Mode and/or CloudFront + Lambda Web Adapter |
Deployment order: Foundation → Bedrock → Agent → ChatApp
The CDK stacks support deploying to multiple regions in the same AWS account. IAM roles are automatically suffixed with the region name to avoid conflicts.
# Deploy to us-east-1
./deploy-all.sh --region us-east-1
# Deploy to eu-west-1 (same account)
./deploy-all.sh --region eu-west-1# List all stacks
npx cdk list
# Deploy a specific stack
npx cdk deploy htmx-chatapp-Foundation
# View stack differences before deploying
npx cdk diff
# Synthesize CloudFormation templates
npx cdk synth
# View stack outputs
cat cdk-outputs.jsonTo update the application after code changes:
cd cdk
./deploy-all.sh --region <aws-region-id>To update only the ChatApp (faster for UI changes):
cd cdk
npx cdk deploy htmx-chatapp-ChatApp --require-approval neverFor local development, you need to sync environment variables from your deployed CDK stacks.
Prerequisites: CDK stacks must be deployed first (./deploy-all.sh).
cd chatapp
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
# Sync .env from AWS Secrets Manager (auto-populates all values)
./sync-env.sh --region <aws-region-id>
# Or with DEV_MODE (bypasses Cognito authentication)
./sync-env.sh --region <aws-region-id> --dev-mode
# Run locally
uvicorn app.main:app --reload --port 8080- Chat: http://localhost:8080
- Admin: http://localhost:8080/admin
DEV_MODE: When enabled, Cognito authentication is bypassed and requests use a default dev-user-001 user ID. This is useful for rapid iteration without needing to log in. Set DEV_USER_ID in .env to customize the user ID.
Manual .env setup: If you prefer manual configuration, copy .env.example to .env and fill in values. The secret htmx-chatapp/config in AWS Secrets Manager contains all required values.
To destroy all CDK-managed resources:
cd cdk
./destroy-all.sh --region <aws-region-id>Options:
./destroy-all.sh [options]
Options:
--region <region> AWS region (default: us-east-1)
--profile <profile> AWS CLI profile to use
--yes Auto-confirm all prompts (DANGEROUS)
--dry-run Show what would be destroyed without destroying| Variable | Description |
|---|---|
BEDROCK_AGENTCORE_MEMORY_ID |
AgentCore Memory ID |
AWS_REGION |
AWS region |
| Variable | Required | Description |
|---|---|---|
COGNITO_USER_POOL_ID |
Yes | Cognito User Pool ID |
COGNITO_CLIENT_ID |
Yes | Cognito App Client ID |
COGNITO_CLIENT_SECRET |
Yes | Cognito App Client Secret |
AGENTCORE_RUNTIME_ARN |
Yes | AgentCore Runtime ARN |
MEMORY_ID |
Yes | AgentCore Memory ID |
USAGE_TABLE_NAME |
Yes | DynamoDB table for usage records |
FEEDBACK_TABLE_NAME |
Yes | DynamoDB table for feedback records |
GUARDRAIL_TABLE_NAME |
Yes | DynamoDB table for guardrail violations |
GUARDRAIL_ID |
No | Bedrock Guardrail ID for content filtering |
GUARDRAIL_VERSION |
No | Bedrock Guardrail version (default: DRAFT) |
GUARDRAIL_ENABLED |
No | Enable/disable guardrail evaluation (default: true) |
PROMPT_TEMPLATES_TABLE_NAME |
Yes | DynamoDB table for prompt templates |
APP_SETTINGS_TABLE_NAME |
Yes | DynamoDB table for application settings |
RUNTIME_USAGE_TABLE_NAME |
Yes | DynamoDB table for AgentCore runtime usage |
APP_URL |
No | Application URL for callbacks |
AWS_REGION |
Yes | AWS region |
sample-strands-agentcore-starter/
├── agent/ # AgentCore agent
│ ├── my_agent.py # Agent definition
│ ├── tools/ # Agent tools
│ └── requirements.txt
│
├── chatapp/ # Chat and Admin UI
│ ├── app/
│ │ ├── main.py # FastAPI application
│ │ ├── admin/ # Usage analytics module
│ │ ├── auth/ # Cognito authentication
│ │ ├── agentcore/ # AgentCore client
│ │ ├── helpers/ # Shared utilities (settings)
│ │ ├── storage/ # Data storage services
│ │ ├── routes/ # Chat and Admin API routes
│ │ ├── models/ # Data models
│ │ └── templates/ # UI templates
│ ├── scripts/
│ │ ├── create-user.sh # User creation script
│ │ └── generate_test_data.py # Test data generator for admin dashboard
│ └── requirements.txt
│
├── cdk/ # CDK Infrastructure
│ ├── lib/
│ │ ├── foundation-stack.ts # Auth, Storage, IAM, Secrets
│ │ ├── bedrock-stack.ts # Guardrail, KB, Memory
│ │ ├── agent-stack.ts # ECR, CodeBuild, Runtime
│ │ └── chatapp-stack.ts # ECS Express Mode
│ ├── deploy-all.sh # Full deployment script
│ └── destroy-all.sh # Full cleanup script
│
└── README.md
The system tracks usage metrics for cost analysis.
Note: Telemetry data is provided for monitoring purposes. Actual billing is calculated based on metered usage data and may differ from telemetry values due to aggregation timing, reconciliation processes, and measurement precision. Refer to your AWS billing statement for authoritative charges.
- Input/Output Tokens: Per invocation token counts
- Model ID: Which model was used
- Latency: Response time in milliseconds
- Tool Usage: Call counts, success/error rates per tool
- Guardrails Violations: Per filter type, user, and session
| Model | Input Tokens (per 1M) | Output Tokens (per 1M) |
|---|---|---|
| Amazon Nova 2 Lite | $0.30 | $2.50 |
| Amazon Nova Pro | $0.80 | $3.20 |
| Anthropic Claude Haiku 4.5 | $1.00 | $5.00 |
| Anthropic Claude Sonnet 4.5 | $3.00 | $15.00 |
| Anthropic Claude Opus 4.5 | $5.00 | $25.00 |
The dashboard calculates projected monthly costs using:
projected_monthly = (total_cost / days_in_period) * 30
Uses 30 calendar days for monthly estimates.
In addition to token costs, the system tracks AgentCore Runtime usage:
| Metric | Rate |
|---|---|
| vCPU Hours | $0.0895/hour |
| Memory GB-Hours | $0.00945/GB-hour |
How it works:
- AgentCore Runtime emits USAGE_LOGS with metrics per operation
- Logs are streamed via Kinesis Data Firehose to Lambda transform functions
- Lambda parses the logs and writes usage records to DynamoDB (keyed by session_id)
- The admin dashboard aggregates runtime costs alongside token costs
Runtime metrics captured per invocation:
time_elapsed_seconds- Runtime durationvcpu_hours- vCPU time consumedmemory_gb_hours- Memory time consumedsession_id- Links runtime usage to chat session
The dashboard shows:
- Total Cost = Token Cost + Runtime Cost
- Per-session breakdown of token vs runtime costs
- Runtime metrics (duration, vCPU hours, memory GB-hours)
Add tools in agent/tools/ and register them in my_agent.py.
Update the model ID in chatapp/app/static/js/chat.js and add pricing to chatapp/app/admin/cost_calculator.py.
The UsageRepository class in chatapp/app/admin/repository.py provides query methods that can be extended for custom analytics.
The agent includes a Bedrock Knowledge Base for semantic search over curated documents. When configured, the agent prioritizes Knowledge Base results before falling back to web search.
The Knowledge Base is automatically created during CDK deployment. It creates:
- S3 bucket for source documents
- S3 Vectors bucket and index for embeddings
- Bedrock Knowledge Base with Titan Embed Text v2
- Data source connecting the KB to the S3 bucket
-
Upload documents to S3:
# Get the source bucket name from CDK outputs SOURCE_BUCKET=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".SourceBucketName') # Upload documents to the documents/ prefix aws s3 cp my-document.pdf s3://${SOURCE_BUCKET}/documents/ aws s3 cp my-folder/ s3://${SOURCE_BUCKET}/documents/ --recursive
-
Sync/Ingest documents:
# Get the Knowledge Base ID and Data Source ID from CDK outputs KB_ID=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".KnowledgeBaseId') DS_ID=$(aws bedrock-agent list-data-sources --knowledge-base-id $KB_ID --query "dataSourceSummaries[0].dataSourceId" --output text) # Start ingestion job aws bedrock-agent start-ingestion-job \ --knowledge-base-id $KB_ID \ --data-source-id $DS_ID # Check ingestion status aws bedrock-agent list-ingestion-jobs \ --knowledge-base-id $KB_ID \ --data-source-id $DS_ID
The Knowledge Base supports:
- PDF (.pdf)
- Plain text (.txt)
- Markdown (.md)
- HTML (.html)
- Microsoft Word (.doc, .docx)
- CSV (.csv)
When the agent receives a query:
- The agent first searches the Knowledge Base for relevant context
- If relevant results are found (score >= min_score), the agent uses that context
- If no relevant results are found, the agent falls back to web search or URL fetcher
This prioritization ensures domain-specific knowledge takes precedence over general web content.
See CONTRIBUTING for more information.
This library is licensed under the MIT-0 License. See the LICENSE file.

