Skip to content

aws-samples/sample-strands-agentcore-starter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

77 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AgentCore + Strands Agents Starter Application

A full-stack conversational AI starter kit built with Amazon Bedrock AgentCore, Strands Agents SDK, FastAPI, and htmx. This project is used for rapid prototyping of agentic applications. It accelerates proof-of-concept development with built-in telemetry capture, usage analytics, and cost projections.

Agent Chat UI

Why This Starter?

Skip weeks of infrastructure setup and go straight to validating your agentic AI use case. This starter provides everything you need to move from idea to production-ready POC:

  • Production-grade infrastructure in minutes — Deploy a complete agentic AI stack (auth, memory, guardrails, knowledge base, analytics) with a single CDK command, eliminating weeks of boilerplate development
  • Built-in cost intelligence — Track token usage, runtime costs, and tool invocations with projections to forecast production spending before you scale
  • Flexible deployment options — Choose between always-on ECS (~$46/mo) or serverless Lambda Web Adapter (~$12/mo) based on your traffic patterns and budget
  • Extensible agent framework — Add custom tools, swap models, integrate your own knowledge base, and customize the UI without rebuilding core infrastructure

Key Features

Chat Experience

  • 🤖 AI-powered conversational agent with short-term (STM) and long-term memory (LTM)
  • Real-time streaming with token-by-token SSE responses and embedded memory viewer
  • 📝 Prompt templates for quick access to pre-defined prompts
  • 🎨 Customizable branding - title, logos, and theme colors

POC Analytics & Insights

  • 📊 Admin dashboard with usage analytics and cost tracking
  • 💰 Cost projections based on actual usage patterns (token + runtime costs)
  • 👍 User feedback capture with sentiment ratings and comments
  • 🛡️ Guardrails analytics with violation tracking and content filtering
  • 🔧 Tool usage analytics with per-tool invocation metrics and success rates

Agent Capabilities

  • 🧠 Amazon Bedrock AgentCore with Strands Agents SDK
  • 📚 Knowledge Base integration for semantic search over your documents (S3 Vectors)
  • 🛠️ Pre-built tools - web search, URL fetcher, weather, calculator, current time

Infrastructure

  • ☁️ Flexible deployment options - ECS Express Mode or CloudFront + Lambda Web Adapter
  • 💸 Cost-optimized - Serverless options with pay-per-use pricing
  • 🔐 Cognito authentication with secure token management
  • 📡 OpenTelemetry and Bedrock AgentCore Observability with logs, traces, and metrics

Admin Dashboard

The built-in admin dashboard (/admin) provides comprehensive usage analytics:

📊 Dashboard Overview /admin

  • Total cost breakdown (token cost + runtime cost)
  • Top users and tools by usage
  • Model breakdown with per-model costs

🔢 Token Usage /admin/tokens

  • Token usage breakdown by model
  • Input vs output distribution
  • Monthly projections

💬 Chat History /admin/history

  • Browse all chat sessions with time filtering
  • Token cost vs runtime cost breakdown

📋 Session Details /admin/sessions/{id}

  • Complete session token and runtime usage
  • Tools invoked with success/error rates

👍 Feedback Analytics /admin/feedback

  • User sentiment and comments capture
  • Review related conversation context

👥 User Analytics /admin/users

  • Per-user token usage and session counts

🛡️ Guardrails Analytics /admin/guardrails

  • Violation tracking by filter type
  • Filter strength and confidence levels

🔧 Tool Analytics /admin/tools

  • Call counts per tool with success/error rates
  • Average execution times

📝 Prompt Templates /admin/templates

  • Create reusable prompt templates that appear in chat UI dropdown
  • Edit title, description, and prompt text

🎨 Application Settings /admin/settings

  • Customize app title, subtitle, and welcome message
  • Set app theme including color and custom logos

Usage Dashboard

Architecture

The application supports two ingress modes for the FastAPI application: ECS Express Gateway (serverless container) or CloudFront + Lambda Web Adapter (serverless function with edge distribution).

┌─────────────────┐      ┌─────────────────────────────────┐      ┌─────────────────┐
│                 │      │     ECS Express (Fargate)       │      │                 │
│     Browser     │      │            - or -               │      │   Guardrails    │
│  Chat + Admin   │◀────▶│  CloudFront + Lambda Web Adapter│◀────▶│   (Bedrock)     │
│                 │ SSE  │                                 │      │                 │
└─────────────────┘      │           FastAPI               │      └─────────────────┘
        │                └─────────────────────────────────┘               │
        │                               │                                  │
        │                               ▼                                  ▼
        │                        ┌─────────────────┐              ┌─────────────────┐
        │                        │    DynamoDB     │              │    AgentCore    │
        │                        │  Usage/Feedback │              │     Runtime     │
        │                        │  Runtime Usage  │              │  Strands Agent  │
        │                        └─────────────────┘              └─────────────────┘
        │                               ▲                          │      │      │
        │                               │                          │      │      │
        │                        ┌──────┴──────┐                   │      │      │
        │                        │   Lambda    │                   │      │      │
        │                        │  Transform  │                   ▼      │      ▼
        │                        └─────────────┘           ┌───────────┐  │  ┌───────────┐
        │                               ▲                  │  Bedrock  │  │  │ AgentCore │
        │                        ┌──────┴──────┐           │   LLM     │  │  │  Memory   │
        │                        │  Firehose   │           └───────────┘  │  └───────────┘
        ▼                        └─────────────┘                          │
┌─────────────────┐                     ▲                                 │
│     Cognito     │                     │                                 │
│      Auth       │                     └─────────────────────────────────┘
└─────────────────┘                              USAGE_LOGS

Prerequisites

Tool Minimum Version Purpose
Node.js 18.x+ CDK runtime
AWS CDK CLI 2.x Infrastructure deployment
AWS CLI 2.x AWS resource management

Install CDK CLI globally:

npm install -g aws-cdk

Note: Docker is not required locally - all container builds are handled by AWS CodeBuild.

AWS Requirements

  • AWS Account with a Default VPC
  • IAM permissions with access to Bedrock, Bedrock AgentCore, ECS, Cognito, ECR, DynamoDB, Secrets Manager

Quick Start

  1. Clone the repository:

    git clone https://github.com/aws-samples/sample-strands-agentcore-starter
    cd sample-strands-agentcore-starter
  2. Install CDK dependencies:

    cd cdk
    npm install
  3. Deploy all stacks:

    ./deploy-all.sh --region <aws-region-id>
  4. Create a test user (add --admin for admin access):

    cd ../chatapp/scripts
    ./create-user.sh your-email@example.com YourPassword123@ --admin
  5. Wait for deployment (5-10 minutes for ECS, 3-4 minutes for Lambda), then access the URL shown in the deployment output.

The deployment creates:

  • Cognito User Pool for authentication
  • DynamoDB tables for usage analytics, feedback, and guardrails
  • Bedrock Guardrail for content filtering
  • Bedrock Knowledge Base with S3 Vectors
  • AgentCore Memory with LTM strategies
  • AgentCore Runtime with the deployed agent
  • ChatApp ingress (ECS Express Mode and/or CloudFront + Lambda Web Adapter based on --ingress flag)

Deployment Options

The application supports three ingress modes for different use cases and cost profiles:

Ingress Modes

Mode Description Monthly Cost Use Case
ecs ECS Express Gateway - Always-on container service ~$46 Production workloads, consistent traffic, no cold starts
furl (default) CloudFront + Lambda Web Adapter - Serverless pay-per-use with edge distribution ~$12 Development, PoC, sporadic usage, cost optimization
both Deploy both simultaneously ~$58 A/B testing, migration, redundancy

Deployment Command

./deploy-all.sh [options]

Options:
  --region <region>    AWS region (default: us-east-1)
  --profile <profile>  AWS CLI profile to use
  --ingress <mode>     Ingress mode: ecs, furl, or both (default: ecs)
  --dry-run            Show what would be deployed without deploying

Examples

# Deploy with ECS Express Gateway
./deploy-all.sh --region us-east-1 --ingress ecs

# Deploy with CloudFront + Lambda Web Adapter (default)
./deploy-all.sh --region us-east-1 --ingress furl

# Deploy both ECS and Lambda simultaneously
./deploy-all.sh --region us-east-1 --ingress both

Cost Breakdown

ECS Mode (~$44/month):

  • ECS Fargate: ~$18/mo (0.5 vCPU, 1GB RAM, always-on)
  • Application Load Balancer: ~$16.20/mo (managed by Express Gateway)
  • IPv4 addresses: ~$10.95/mo (3 ALB IPs across AZs + 1 task ENI)
  • Data transfer: ~$0.50/mo

Lambda Web Adapter Mode (~$12/month typical):

  • CloudFront distribution: ~$1.00/mo (1M requests)
  • Lambda compute: ~$10/mo (10,000 requests/day @ 1GB/2s avg)
  • Lambda@Edge: ~$0.50/mo (payload hash computation)
  • Data transfer: ~$0.60/mo
  • No charges for: IPv4, ALB, or idle time
  • Cold starts: First request after idle may take 3-5 seconds

Both Mode: Combines costs of both deployment modes

Stack Architecture

The CDK deployment creates 4 consolidated CloudFormation stacks:

Stack Description Key Resources
Foundation Auth, Storage, IAM, Secrets Cognito, DynamoDB tables, ECS roles, Secrets Manager
Bedrock AI/ML Resources Guardrail, Knowledge Base (S3 Vectors), AgentCore Memory
Agent Agent Infrastructure ECR, CodeBuild, AgentCore Runtime, Observability
ChatApp Application ECR, CodeBuild, S3 source, ECS Express Mode and/or CloudFront + Lambda Web Adapter

Deployment order: Foundation → Bedrock → Agent → ChatApp

Multi-Region Deployment

The CDK stacks support deploying to multiple regions in the same AWS account. IAM roles are automatically suffixed with the region name to avoid conflicts.

# Deploy to us-east-1
./deploy-all.sh --region us-east-1

# Deploy to eu-west-1 (same account)
./deploy-all.sh --region eu-west-1

Useful Commands

# List all stacks
npx cdk list

# Deploy a specific stack
npx cdk deploy htmx-chatapp-Foundation

# View stack differences before deploying
npx cdk diff

# Synthesize CloudFormation templates
npx cdk synth

# View stack outputs
cat cdk-outputs.json

Updating Deployments

To update the application after code changes:

cd cdk
./deploy-all.sh --region <aws-region-id>

To update only the ChatApp (faster for UI changes):

cd cdk
npx cdk deploy htmx-chatapp-ChatApp --require-approval never

Local Development

For local development, you need to sync environment variables from your deployed CDK stacks.

Prerequisites: CDK stacks must be deployed first (./deploy-all.sh).

cd chatapp
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

# Sync .env from AWS Secrets Manager (auto-populates all values)
./sync-env.sh --region <aws-region-id>

# Or with DEV_MODE (bypasses Cognito authentication)
./sync-env.sh --region <aws-region-id> --dev-mode

# Run locally
uvicorn app.main:app --reload --port 8080

DEV_MODE: When enabled, Cognito authentication is bypassed and requests use a default dev-user-001 user ID. This is useful for rapid iteration without needing to log in. Set DEV_USER_ID in .env to customize the user ID.

Manual .env setup: If you prefer manual configuration, copy .env.example to .env and fill in values. The secret htmx-chatapp/config in AWS Secrets Manager contains all required values.

Cleanup

To destroy all CDK-managed resources:

cd cdk
./destroy-all.sh --region <aws-region-id>

Options:

./destroy-all.sh [options]

Options:
  --region <region>    AWS region (default: us-east-1)
  --profile <profile>  AWS CLI profile to use
  --yes                Auto-confirm all prompts (DANGEROUS)
  --dry-run            Show what would be destroyed without destroying

Environment Variables

Agent

Variable Description
BEDROCK_AGENTCORE_MEMORY_ID AgentCore Memory ID
AWS_REGION AWS region

ChatApp

Variable Required Description
COGNITO_USER_POOL_ID Yes Cognito User Pool ID
COGNITO_CLIENT_ID Yes Cognito App Client ID
COGNITO_CLIENT_SECRET Yes Cognito App Client Secret
AGENTCORE_RUNTIME_ARN Yes AgentCore Runtime ARN
MEMORY_ID Yes AgentCore Memory ID
USAGE_TABLE_NAME Yes DynamoDB table for usage records
FEEDBACK_TABLE_NAME Yes DynamoDB table for feedback records
GUARDRAIL_TABLE_NAME Yes DynamoDB table for guardrail violations
GUARDRAIL_ID No Bedrock Guardrail ID for content filtering
GUARDRAIL_VERSION No Bedrock Guardrail version (default: DRAFT)
GUARDRAIL_ENABLED No Enable/disable guardrail evaluation (default: true)
PROMPT_TEMPLATES_TABLE_NAME Yes DynamoDB table for prompt templates
APP_SETTINGS_TABLE_NAME Yes DynamoDB table for application settings
RUNTIME_USAGE_TABLE_NAME Yes DynamoDB table for AgentCore runtime usage
APP_URL No Application URL for callbacks
AWS_REGION Yes AWS region

Project Structure

sample-strands-agentcore-starter/
├── agent/                        # AgentCore agent
│   ├── my_agent.py               # Agent definition
│   ├── tools/                    # Agent tools
│   └── requirements.txt
│
├── chatapp/                      # Chat and Admin UI
│   ├── app/
│   │   ├── main.py               # FastAPI application
│   │   ├── admin/                # Usage analytics module
│   │   ├── auth/                 # Cognito authentication
│   │   ├── agentcore/            # AgentCore client
│   │   ├── helpers/              # Shared utilities (settings)
│   │   ├── storage/              # Data storage services
│   │   ├── routes/               # Chat and Admin API routes
│   │   ├── models/               # Data models
│   │   └── templates/            # UI templates
│   ├── scripts/
│   │   ├── create-user.sh        # User creation script
│   │   └── generate_test_data.py # Test data generator for admin dashboard
│   └── requirements.txt
│
├── cdk/                          # CDK Infrastructure
│   ├── lib/
│   │   ├── foundation-stack.ts   # Auth, Storage, IAM, Secrets
│   │   ├── bedrock-stack.ts      # Guardrail, KB, Memory
│   │   ├── agent-stack.ts        # ECR, CodeBuild, Runtime
│   │   └── chatapp-stack.ts      # ECS Express Mode
│   ├── deploy-all.sh             # Full deployment script
│   └── destroy-all.sh            # Full cleanup script
│
└── README.md

Cost Tracking

The system tracks usage metrics for cost analysis.

Note: Telemetry data is provided for monitoring purposes. Actual billing is calculated based on metered usage data and may differ from telemetry values due to aggregation timing, reconciliation processes, and measurement precision. Refer to your AWS billing statement for authoritative charges.

Captured Metrics

  • Input/Output Tokens: Per invocation token counts
  • Model ID: Which model was used
  • Latency: Response time in milliseconds
  • Tool Usage: Call counts, success/error rates per tool
  • Guardrails Violations: Per filter type, user, and session

Default Models and Costs

Model Input Tokens (per 1M) Output Tokens (per 1M)
Amazon Nova 2 Lite $0.30 $2.50
Amazon Nova Pro $0.80 $3.20
Anthropic Claude Haiku 4.5 $1.00 $5.00
Anthropic Claude Sonnet 4.5 $3.00 $15.00
Anthropic Claude Opus 4.5 $5.00 $25.00

Monthly Projections

The dashboard calculates projected monthly costs using:

projected_monthly = (total_cost / days_in_period) * 30

Uses 30 calendar days for monthly estimates.

AgentCore Runtime Usage Costs

In addition to token costs, the system tracks AgentCore Runtime usage:

Metric Rate
vCPU Hours $0.0895/hour
Memory GB-Hours $0.00945/GB-hour

How it works:

  1. AgentCore Runtime emits USAGE_LOGS with metrics per operation
  2. Logs are streamed via Kinesis Data Firehose to Lambda transform functions
  3. Lambda parses the logs and writes usage records to DynamoDB (keyed by session_id)
  4. The admin dashboard aggregates runtime costs alongside token costs

Runtime metrics captured per invocation:

  • time_elapsed_seconds - Runtime duration
  • vcpu_hours - vCPU time consumed
  • memory_gb_hours - Memory time consumed
  • session_id - Links runtime usage to chat session

The dashboard shows:

  • Total Cost = Token Cost + Runtime Cost
  • Per-session breakdown of token vs runtime costs
  • Runtime metrics (duration, vCPU hours, memory GB-hours)

Customization

Adding New Tools

Add tools in agent/tools/ and register them in my_agent.py.

Changing Models

Update the model ID in chatapp/app/static/js/chat.js and add pricing to chatapp/app/admin/cost_calculator.py.

Extending Analytics

The UsageRepository class in chatapp/app/admin/repository.py provides query methods that can be extended for custom analytics.

Knowledge Base Integration

The agent includes a Bedrock Knowledge Base for semantic search over curated documents. When configured, the agent prioritizes Knowledge Base results before falling back to web search.

Setup

The Knowledge Base is automatically created during CDK deployment. It creates:

  • S3 bucket for source documents
  • S3 Vectors bucket and index for embeddings
  • Bedrock Knowledge Base with Titan Embed Text v2
  • Data source connecting the KB to the S3 bucket

Adding Documents to the Knowledge Base

  1. Upload documents to S3:

    # Get the source bucket name from CDK outputs
    SOURCE_BUCKET=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".SourceBucketName')
    
    # Upload documents to the documents/ prefix
    aws s3 cp my-document.pdf s3://${SOURCE_BUCKET}/documents/
    aws s3 cp my-folder/ s3://${SOURCE_BUCKET}/documents/ --recursive
  2. Sync/Ingest documents:

    # Get the Knowledge Base ID and Data Source ID from CDK outputs
    KB_ID=$(cat cdk/cdk-outputs.json | jq -r '."htmx-chatapp-Bedrock".KnowledgeBaseId')
    DS_ID=$(aws bedrock-agent list-data-sources --knowledge-base-id $KB_ID --query "dataSourceSummaries[0].dataSourceId" --output text)
    
    # Start ingestion job
    aws bedrock-agent start-ingestion-job \
      --knowledge-base-id $KB_ID \
      --data-source-id $DS_ID
    
    # Check ingestion status
    aws bedrock-agent list-ingestion-jobs \
      --knowledge-base-id $KB_ID \
      --data-source-id $DS_ID

Supported Document Formats

The Knowledge Base supports:

  • PDF (.pdf)
  • Plain text (.txt)
  • Markdown (.md)
  • HTML (.html)
  • Microsoft Word (.doc, .docx)
  • CSV (.csv)

How the Agent Uses the Knowledge Base

When the agent receives a query:

  1. The agent first searches the Knowledge Base for relevant context
  2. If relevant results are found (score >= min_score), the agent uses that context
  3. If no relevant results are found, the agent falls back to web search or URL fetcher

This prioritization ensures domain-specific knowledge takes precedence over general web content.

Security

See CONTRIBUTING for more information.

License

This library is licensed under the MIT-0 License. See the LICENSE file.

About

A full-stack conversational AI starter kit built with Amazon Bedrock AgentCore, Strands Agents SDK, FastAPI, and htmx.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •