Submitted to the 11th International Smart City Workshop, co-located with the 2025 ACM Web Conference (WWW'25)
TL;DR: embedding geo-referenced vector data, combining geometric, spatial, and semantic neighborhood contexts, for inferring geo-entity types in OSM & Wikidata.
__
pip3 install -r requirements.txt
usage: preprocess_data.py [-h] --input_osm INPUT_OSM [--output_dir OUTPUT_DIR] [--output_file OUTPUT_FILE]
Pre-process the OSM data for the training of Geo-Embedding model.
optional arguments:
-h, --help show this help message and exit
--input_osm INPUT_OSM
OSM dump (xml) input filename.
--output_dir OUTPUT_DIR
Output OSM images directory path.
--output_file OUTPUT_FILE
output filename (used for the training script).
usage: train_model.py [-h] --train_fname TRAIN_FNAME [--taxo_tree_fname TAXO_TREE_FNAME] [--imgs_dir IMGS_DIR] [--epochs EPOCHS] [--eval_fname EVAL_FNAME] [--output OUTPUT]
Train Geo-Embedding model.
optional arguments:
-h, --help show this help message and exit
--train_fname TRAIN_FNAME
Training data file name.
--taxo_tree_fname TAXO_TREE_FNAME
Taxonomy tree json file name.
--imgs_dir IMGS_DIR Training shape images path location.
--epochs EPOCHS Number of epochs to train for.
--eval_fname EVAL_FNAME
[Optional] if provided, will run evaluation, this arg is the evaluation file name (see example).
--output OUTPUT Model output filename.