Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jan 16, 2026

📄 764% (7.64x) speedup for tridiagonal_solve in code_to_optimize/sample_code.py

⏱️ Runtime : 4.59 milliseconds 532 microseconds (best of 84 runs)

📝 Explanation and details

The optimized code achieves an 8.6x speedup (763% faster) through two key optimizations:

1. Numba JIT Compilation for Large Arrays (n > 64)

The code introduces optional Numba JIT compilation that compiles the tridiagonal solver to native machine code. When Numba is available and the array size exceeds 64 elements, the algorithm benefits from:

  • Elimination of Python interpreter overhead: Direct machine code execution instead of bytecode interpretation
  • Optimized loop execution: The sequential forward sweep and back substitution loops (which dominate runtime per the profiler) are compiled to efficient assembly
  • Reduced function call overhead: Native compilation removes the cost of repeated NumPy array indexing operations

From the profiler results, the forward sweep loop (lines with for i in range(1, n-1)) consumed ~56% of runtime, and the back substitution loop consumed ~29%. JIT compilation dramatically accelerates these sequential operations that cannot be easily vectorized.

2. Memory Allocation Optimization: np.empty() vs np.zeros()

Replacing np.zeros() with np.empty() for the working arrays (c_prime, d_prime, x) eliminates unnecessary memory initialization. Since all elements are overwritten during computation, zero-initialization wastes cycles. This provides consistent minor gains across all test cases.

Performance Impact by Test Case Size:

  • Small arrays (n < 64): ~1-3% improvement from np.empty() alone (falls back to pure Python path)
  • Medium arrays (n=100-200): 12-22x speedup (1199-2207% faster) as Numba compilation overhead is amortized
  • Large arrays (n=500-800): 45-56x speedup (4531-5570% faster) where JIT compilation dominates performance

Deployment Considerations:

The optimization gracefully degrades - if Numba is unavailable, the code falls back to the original implementation with only the np.empty() benefit. The n > 64 threshold ensures Numba compilation overhead doesn't hurt small array performance. This makes the optimization safe for production environments where Numba availability may vary, while providing massive gains for the larger systems typical in numerical computing workloads.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 21 Passed
🌀 Generated Regression Tests 26 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
⚙️ Click to see Existing Unit Tests
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
test_numba_jit_code.py::TestTridiagonalSolve.test_diagonal_system 13.7μs 13.5μs 1.10%✅
test_numba_jit_code.py::TestTridiagonalSolve.test_larger_system 178μs 13.1μs 1260%✅
test_numba_jit_code.py::TestTridiagonalSolve.test_simple_system 14.0μs 13.7μs 1.96%✅
test_numba_jit_code.py::TestTridiagonalSolve.test_two_element_system 12.2μs 11.8μs 3.54%✅
🌀 Click to see Generated Regression Tests
import math

import numpy as np

# imports
import pytest  # used for our unit tests

from code_to_optimize.sample_code import tridiagonal_solve


# ---------------------------------------------------------------------
# Helper utilities for tests
# ---------------------------------------------------------------------
def arrays_allclose_python(a: np.ndarray, b: np.ndarray, rtol: float = 1e-7, atol: float = 1e-12) -> bool:
    """Compare two numpy arrays elementwise using math.isclose to avoid
    relying on numpy.testing utilities. This function returns True if
    every corresponding element is close within the given tolerances.
    """
    if a.shape != b.shape:
        return False
    for ai, bi in zip(a.ravel(), b.ravel()):
        # use math.isclose for each element
        if not math.isclose(float(ai), float(bi), rel_tol=rtol, abs_tol=atol):
            return False
    return True


def tridiag_matvec(a: np.ndarray, b: np.ndarray, c: np.ndarray, x: np.ndarray) -> np.ndarray:
    """Compute A @ x where A is the tridiagonal matrix defined by a (subdiag),
    b (diag), c (superdiag). This avoids creating a dense matrix and uses only
    Python/numpy ops suitable for verifying residuals.
    """
    n = b.shape[0]
    out = np.zeros(n, dtype=np.float64)
    for i in range(n):
        # diagonal contribution
        out[i] += b[i] * x[i]
        # subdiagonal (a[i-1] affects row i)
        if i - 1 >= 0:
            out[i] += a[i - 1] * x[i - 1]
        # superdiagonal (c[i] affects row i)
        if i < n - 1:
            out[i] += c[i] * x[i + 1]
    return out


# ---------------------------------------------------------------------
# Test cases
# ---------------------------------------------------------------------


def test_two_by_two_matches_dense_solve():
    """Basic: small 2x2 system - compare against numpy.linalg.solve on full matrix."""
    # Build tridiagonal components for matrix:
    # [ 4  1 ]
    # [ 2  3 ]
    a = np.array([2.0], dtype=np.float64)  # subdiagonal (a0)
    b = np.array([4.0, 3.0], dtype=np.float64)  # main diagonal
    c = np.array([1.0], dtype=np.float64)  # superdiagonal (c0)
    d = np.array([7.0, 8.0], dtype=np.float64)  # RHS

    # expected result via dense solver
    A = np.array([[4.0, 1.0], [2.0, 3.0]], dtype=np.float64)
    expected = np.linalg.solve(A, d)

    # compute using tridiagonal solver
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 11.1μs -> 10.6μs (4.22% faster)


def test_random_diagonally_dominant_small():
    """Basic/Edge: random small systems that are diagonally dominant (stable).
    This ensures the algorithm handles typical random inputs and matches dense solve.
    """
    rng = np.random.RandomState(42)  # deterministic RNG
    n = 10  # small system
    # create random off-diagonals
    a = rng.randn(n - 1).astype(np.float64)
    c = rng.randn(n - 1).astype(np.float64)
    # make diagonal strictly dominant so matrix is nonsingular and well-conditioned
    b = np.empty(n, dtype=np.float64)
    for i in range(n):
        # main diagonal larger than sum of magnitudes of neighboring off-diagonals
        left = abs(a[i - 1]) if i - 1 >= 0 else 0.0
        right = abs(c[i]) if i < n - 1 else 0.0
        b[i] = left + right + 1.0 + abs(rng.randn())  # positive and dominant
    d = rng.randn(n).astype(np.float64)

    # expected solution via dense solver
    # build dense tridiagonal for reference
    A = np.zeros((n, n), dtype=np.float64)
    for i in range(n):
        A[i, i] = b[i]
        if i > 0:
            A[i, i - 1] = a[i - 1]
        if i < n - 1:
            A[i, i + 1] = c[i]
    expected = np.linalg.solve(A, d)

    # compute using tridiagonal solver
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 21.6μs -> 21.7μs (0.452% slower)


def test_residual_is_small_for_various_inputs():
    """Edge: The computed x should satisfy A @ x ≈ d even if we don't compute
    the dense reference; this checks internal consistency (residual check).
    """
    rng = np.random.RandomState(123)
    n = 20
    a = rng.randn(n - 1).astype(np.float64) * 0.5
    c = rng.randn(n - 1).astype(np.float64) * 0.5
    # ensure diagonal dominance to avoid singularities
    b = np.ones(n, dtype=np.float64) * 2.0
    d = rng.randn(n).astype(np.float64)

    # solve using tridiagonal solver
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 36.9μs -> 36.9μs (0.133% slower)

    # compute residual r = A x - d
    Ax = tridiag_matvec(a, b, c, x)
    # assert each residual entry is small relative to RHS scale
    for ai, bi in zip(Ax, d):
        pass


def test_zero_on_main_diagonal_produces_nonfinite_result():
    """Edge: If the main diagonal has a zero (b[0] == 0), algorithm will
    attempt division by zero; IEEE float behavior yields inf or nan.
    We assert that the result contains non-finite values to indicate failure.
    """
    # Construct n=3 with b[0] == 0
    a = np.array([1.0, 1.0], dtype=np.float64)
    b = np.array([0.0, 2.0, 2.0], dtype=np.float64)  # first diagonal element zero
    c = np.array([1.0, 1.0], dtype=np.float64)
    d = np.array([1.0, 2.0, 3.0], dtype=np.float64)

    # call the solver
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 44.0μs -> 42.7μs (2.91% faster)

    # at least one entry should be non-finite (inf or nan) due to division by zero
    any_nonfinite = False
    for xi in x:
        if not math.isfinite(float(xi)):
            any_nonfinite = True
            break


def test_mismatched_length_inputs_raise():
    """Edge: Passing vectors with incompatible sizes should raise an exception
    (IndexError or ValueError depending on implementation details).
    We only assert that some exception is raised rather than successful silent handling.
    """
    # a length should be n-1 but here we pass wrong sizes
    a = np.array([1.0, 2.0], dtype=np.float64)  # length 2
    b = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float64)  # length 4
    c = np.array([1.0], dtype=np.float64)  # incorrect length
    d = np.array([1.0, 1.0, 1.0, 1.0], dtype=np.float64)
    # Expect an exception due to index out of bounds during computation
    with pytest.raises(Exception):
        codeflash_output = tridiagonal_solve(a, b, c, d)
        _ = codeflash_output  # 12.4μs -> 12.1μs (2.22% faster)


def test_large_scale_diagonally_dominant_accuracy():
    """Large Scale: Ensure solver scales to larger n (within limits).
    We keep n under 1000 per the constraints (choose n=800).
    Verify accuracy by comparing residuals rather than relying solely on dense solve
    (dense solve would be more expensive).
    """
    rng = np.random.RandomState(2026)
    n = 800  # large but under 1000 to respect test constraints
    # random off-diagonals
    a = (rng.rand(n - 1) - 0.5).astype(np.float64)
    c = (rng.rand(n - 1) - 0.5).astype(np.float64)
    # build diagonal to be strictly diagonally dominant for stability
    b = np.empty(n, dtype=np.float64)
    for i in range(n):
        left = abs(a[i - 1]) if i - 1 >= 0 else 0.0
        right = abs(c[i]) if i < n - 1 else 0.0
        b[i] = left + right + 1.0  # ensure dominance
    # random RHS
    d = (rng.rand(n) - 0.5).astype(np.float64)

    # solve
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 1.40ms -> 24.7μs (5570% faster)

    # verify residual is small: A @ x ≈ d
    Ax = tridiag_matvec(a, b, c, x)


def test_accuracy_against_numpy_dense_for_medium_system():
    """Basic/Large: For a medium size (n=100) compare against numpy.linalg.solve
    to ensure that results are accurate compared to a dense solver.
    """
    rng = np.random.RandomState(7)
    n = 100
    a = rng.randn(n - 1).astype(np.float64) * 0.1
    c = rng.randn(n - 1).astype(np.float64) * 0.1
    # diagonal dominance for stability
    b = np.ones(n, dtype=np.float64) * 1.0 + np.abs(rng.randn(n).astype(np.float64)) * 0.5
    d = rng.randn(n).astype(np.float64)

    # build dense matrix and expected solution
    A = np.zeros((n, n), dtype=np.float64)
    for i in range(n):
        A[i, i] = b[i]
        if i > 0:
            A[i, i - 1] = a[i - 1]
        if i < n - 1:
            A[i, i + 1] = c[i]
    expected = np.linalg.solve(A, d)

    # compute with tridiagonal solver
    codeflash_output = tridiagonal_solve(a, b, c, d)
    x = codeflash_output  # 205μs -> 15.2μs (1253% faster)


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
import numpy as np

from code_to_optimize.sample_code import tridiagonal_solve

# ============================================================================
# BASIC TEST CASES - Testing fundamental functionality under normal conditions
# ============================================================================


def test_two_element_system():
    """Test solving a 2x2 tridiagonal system."""
    # System: 2*x[0] + 1*x[1] = 5
    #         1*x[0] + 3*x[1] = 8
    # Solution: x[0] = 1, x[1] = 3
    a = np.array([1.0], dtype=np.float64)
    b = np.array([2.0, 3.0], dtype=np.float64)
    c = np.array([1.0], dtype=np.float64)
    d = np.array([5.0, 8.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 11.2μs -> 11.1μs (0.720% faster)


def test_three_element_system():
    """Test solving a 3x3 tridiagonal system."""
    # Standard tridiagonal system of size 3
    a = np.array([1.0, 1.0], dtype=np.float64)
    b = np.array([4.0, 4.0, 4.0], dtype=np.float64)
    c = np.array([1.0, 1.0], dtype=np.float64)
    d = np.array([6.0, 10.0, 6.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.9μs -> 12.8μs (0.452% faster)
    # Verify solution by checking residual is near zero
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]
    residual_1 = a[0] * result[0] + b[1] * result[1] + c[1] * result[2] - d[1]
    residual_2 = a[1] * result[1] + b[2] * result[2] - d[2]


def test_identity_like_system():
    """Test system with identity-like diagonal matrix."""
    # System where diagonal is much larger than off-diagonals
    a = np.array([0.1, 0.1], dtype=np.float64)
    b = np.array([10.0, 10.0, 10.0], dtype=np.float64)
    c = np.array([0.1, 0.1], dtype=np.float64)
    d = np.array([10.0, 20.0, 30.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.6μs -> 12.7μs (0.394% slower)


def test_diagonal_dominant_system():
    """Test diagonally dominant system (standard well-conditioned case)."""
    # Classic diagonally dominant system
    a = np.array([1.0, 1.0, 1.0], dtype=np.float64)
    b = np.array([4.0, 4.0, 4.0, 4.0], dtype=np.float64)
    c = np.array([1.0, 1.0, 1.0], dtype=np.float64)
    d = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 14.3μs -> 14.4μs (0.686% slower)
    # Verify residual is small
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]
    residual_1 = a[0] * result[0] + b[1] * result[1] + c[1] * result[2] - d[1]
    residual_2 = a[1] * result[1] + b[2] * result[2] + c[2] * result[3] - d[2]
    residual_3 = a[2] * result[2] + b[3] * result[3] - d[3]


# ============================================================================
# EDGE CASE TEST CASES - Testing extreme or unusual conditions
# ============================================================================


def test_very_small_diagonal_elements():
    """Test system with very small diagonal elements (but non-zero)."""
    # Small but positive diagonal elements
    a = np.array([0.001, 0.001], dtype=np.float64)
    b = np.array([0.01, 0.01, 0.01], dtype=np.float64)
    c = np.array([0.001, 0.001], dtype=np.float64)
    d = np.array([0.01, 0.02, 0.03], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.6μs -> 12.7μs (0.946% slower)
    # Verify residuals are within numerical precision bounds
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]


def test_large_magnitude_coefficients():
    """Test system with very large coefficient values."""
    # Large magnitude system
    a = np.array([1e6, 1e6], dtype=np.float64)
    b = np.array([1e7, 1e7, 1e7], dtype=np.float64)
    c = np.array([1e6, 1e6], dtype=np.float64)
    d = np.array([1e8, 2e8, 3e8], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.7μs -> 12.5μs (1.85% faster)


def test_negative_coefficients():
    """Test system with negative coefficients."""
    # System with mix of positive and negative values
    a = np.array([-0.5, -0.5], dtype=np.float64)
    b = np.array([2.0, 2.0, 2.0], dtype=np.float64)
    c = np.array([-0.5, -0.5], dtype=np.float64)
    d = np.array([1.0, 0.0, 1.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.8μs -> 12.6μs (1.01% faster)
    # Verify residuals
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]
    residual_1 = a[0] * result[0] + b[1] * result[1] + c[1] * result[2] - d[1]
    residual_2 = a[1] * result[1] + b[2] * result[2] - d[2]


def test_zero_off_diagonals():
    """Test system where off-diagonal elements are zero (pure diagonal)."""
    # When a and c are zero, system reduces to diagonal
    a = np.array([0.0, 0.0], dtype=np.float64)
    b = np.array([2.0, 3.0, 4.0], dtype=np.float64)
    c = np.array([0.0, 0.0], dtype=np.float64)
    d = np.array([6.0, 9.0, 12.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.7μs -> 12.6μs (0.841% faster)


def test_alternating_signs_diagonal():
    """Test system with alternating signs on diagonal."""
    # Alternating positive/negative diagonal
    a = np.array([1.0, 1.0, 1.0], dtype=np.float64)
    b = np.array([5.0, -3.0, 5.0, -3.0], dtype=np.float64)
    c = np.array([1.0, 1.0, 1.0], dtype=np.float64)
    d = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 14.4μs -> 14.4μs (0.097% faster)


def test_fractional_coefficients():
    """Test system with all fractional coefficients."""
    # System with fractional values
    a = np.array([0.5, 0.25], dtype=np.float64)
    b = np.array([1.5, 2.0, 1.5], dtype=np.float64)
    c = np.array([0.5, 0.25], dtype=np.float64)
    d = np.array([0.5, 1.0, 0.75], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.5μs -> 12.6μs (0.614% slower)
    # Verify residuals
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]
    residual_1 = a[0] * result[0] + b[1] * result[1] + c[1] * result[2] - d[1]
    residual_2 = a[1] * result[1] + b[2] * result[2] - d[2]


# ============================================================================
# LARGE SCALE TEST CASES - Testing performance and scalability
# ============================================================================


def test_medium_system_size_50():
    """Test solving a 50x50 tridiagonal system."""
    n = 50
    # Create a well-conditioned tridiagonal system
    a = np.full(n - 1, 1.0, dtype=np.float64)
    b = np.full(n, 4.0, dtype=np.float64)
    c = np.full(n - 1, 1.0, dtype=np.float64)
    d = np.arange(1.0, n + 1.0, dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 86.1μs -> 87.2μs (1.21% slower)

    # Verify a sample of residuals
    for i in range(min(5, n)):
        if i == 0:
            residual = b[0] * result[0] + c[0] * result[1] - d[0]
        elif i == n - 1:
            residual = a[n - 2] * result[n - 2] + b[n - 1] * result[n - 1] - d[n - 1]
        else:
            residual = a[i - 1] * result[i - 1] + b[i] * result[i] + c[i] * result[i + 1] - d[i]


def test_medium_system_size_100():
    """Test solving a 100x100 tridiagonal system."""
    n = 100
    # Create a well-conditioned system with varying diagonal dominance
    a = np.full(n - 1, 0.5, dtype=np.float64)
    b = np.full(n, 3.0, dtype=np.float64)
    c = np.full(n - 1, 0.5, dtype=np.float64)
    d = np.sin(np.arange(n, dtype=np.float64) * 0.1)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 164μs -> 12.6μs (1199% faster)

    # Verify residuals at multiple points
    residuals = []
    for i in range(0, n, 20):  # Sample every 20th equation
        if i == 0:
            residual = b[0] * result[0] + c[0] * result[1] - d[0]
        elif i == n - 1:
            residual = a[n - 2] * result[n - 2] + b[n - 1] * result[n - 1] - d[n - 1]
        else:
            residual = a[i - 1] * result[i - 1] + b[i] * result[i] + c[i] * result[i + 1] - d[i]
        residuals.append(abs(residual))


def test_large_system_size_500():
    """Test solving a 500x500 tridiagonal system."""
    n = 500
    # Create system with strictly diagonally dominant matrix
    a = np.full(n - 1, 0.2, dtype=np.float64)
    b = np.full(n, 5.0, dtype=np.float64)
    c = np.full(n - 1, 0.2, dtype=np.float64)
    d = np.cos(np.arange(n, dtype=np.float64) * 0.01) * 10.0

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 902μs -> 19.5μs (4531% faster)

    # Check residual at middle equation
    i = n // 2
    residual = a[i - 1] * result[i - 1] + b[i] * result[i] + c[i] * result[i + 1] - d[i]


def test_large_system_varying_coefficients():
    """Test 200x200 system with varying (non-constant) coefficients."""
    n = 200
    # Create system with varying coefficients
    a = np.linspace(0.1, 0.5, n - 1, dtype=np.float64)
    b = np.linspace(3.0, 5.0, n, dtype=np.float64)
    c = np.linspace(0.5, 0.1, n - 1, dtype=np.float64)
    d = np.random.RandomState(42).uniform(0.1, 10.0, n).astype(np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 343μs -> 14.9μs (2207% faster)

    # Verify first, middle, and last equations
    residual_first = b[0] * result[0] + c[0] * result[1] - d[0]
    residual_mid = (
        a[n // 2 - 1] * result[n // 2 - 1] + b[n // 2] * result[n // 2] + c[n // 2] * result[n // 2 + 1] - d[n // 2]
    )
    residual_last = a[n - 2] * result[n - 2] + b[n - 1] * result[n - 1] - d[n - 1]


def test_large_system_small_perturbations():
    """Test 300x300 system with small perturbations on diagonal."""
    n = 300
    # Main diagonal with small perturbations
    b = 4.0 + 0.1 * np.sin(np.arange(n, dtype=np.float64) * 0.05)
    a = np.full(n - 1, 1.0, dtype=np.float64)
    c = np.full(n - 1, 1.0, dtype=np.float64)
    d = np.full(n, 2.0, dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 523μs -> 17.4μs (2902% faster)

    # All residuals should be small
    for i in [0, n // 4, n // 2, 3 * n // 4, n - 1]:
        if i == 0:
            residual = b[0] * result[0] + c[0] * result[1] - d[0]
        elif i == n - 1:
            residual = a[n - 2] * result[n - 2] + b[n - 1] * result[n - 1] - d[n - 1]
        else:
            residual = a[i - 1] * result[i - 1] + b[i] * result[i] + c[i] * result[i + 1] - d[i]


def test_consistency_across_multiple_calls():
    """Test that multiple calls with same input produce identical results."""
    n = 100
    a = np.full(n - 1, 1.0, dtype=np.float64)
    b = np.full(n, 4.0, dtype=np.float64)
    c = np.full(n - 1, 1.0, dtype=np.float64)
    d = np.arange(1.0, n + 1.0, dtype=np.float64)

    # Call function multiple times
    codeflash_output = tridiagonal_solve(a, b, c, d)
    result1 = codeflash_output  # 164μs -> 12.1μs (1262% faster)
    codeflash_output = tridiagonal_solve(a, b, c, d)
    result2 = codeflash_output  # 159μs -> 5.96μs (2582% faster)
    codeflash_output = tridiagonal_solve(a, b, c, d)
    result3 = codeflash_output  # 158μs -> 4.96μs (3103% faster)

    # All results should be identical
    for i in range(n):
        pass


def test_near_singular_system_small():
    """Test system that is nearly singular (small determinant) on small scale."""
    # System with very small diagonal relative to off-diagonal
    a = np.array([0.9, 0.9], dtype=np.float64)
    b = np.array([1.0, 1.0, 1.0], dtype=np.float64)
    c = np.array([0.9, 0.9], dtype=np.float64)
    d = np.array([1.0, 1.0, 1.0], dtype=np.float64)

    codeflash_output = tridiagonal_solve(a, b, c, d)
    result = codeflash_output  # 12.5μs -> 12.7μs (1.97% slower)

    # Verify residual despite poor conditioning
    residual_0 = b[0] * result[0] + c[0] * result[1] - d[0]


# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-tridiagonal_solve-mkgeyav3 and push.

Codeflash Static Badge

The optimized code achieves an **8.6x speedup** (763% faster) through two key optimizations:

## 1. **Numba JIT Compilation for Large Arrays (n > 64)**
The code introduces optional Numba JIT compilation that compiles the tridiagonal solver to native machine code. When Numba is available and the array size exceeds 64 elements, the algorithm benefits from:
- **Elimination of Python interpreter overhead**: Direct machine code execution instead of bytecode interpretation
- **Optimized loop execution**: The sequential forward sweep and back substitution loops (which dominate runtime per the profiler) are compiled to efficient assembly
- **Reduced function call overhead**: Native compilation removes the cost of repeated NumPy array indexing operations

From the profiler results, the forward sweep loop (lines with `for i in range(1, n-1)`) consumed ~56% of runtime, and the back substitution loop consumed ~29%. JIT compilation dramatically accelerates these sequential operations that cannot be easily vectorized.

## 2. **Memory Allocation Optimization: `np.empty()` vs `np.zeros()`**
Replacing `np.zeros()` with `np.empty()` for the working arrays (`c_prime`, `d_prime`, `x`) eliminates unnecessary memory initialization. Since all elements are overwritten during computation, zero-initialization wastes cycles. This provides consistent minor gains across all test cases.

## **Performance Impact by Test Case Size:**

- **Small arrays (n < 64)**: ~1-3% improvement from `np.empty()` alone (falls back to pure Python path)
- **Medium arrays (n=100-200)**: **12-22x speedup** (1199-2207% faster) as Numba compilation overhead is amortized
- **Large arrays (n=500-800)**: **45-56x speedup** (4531-5570% faster) where JIT compilation dominates performance

## **Deployment Considerations:**

The optimization gracefully degrades - if Numba is unavailable, the code falls back to the original implementation with only the `np.empty()` benefit. The `n > 64` threshold ensures Numba compilation overhead doesn't hurt small array performance. This makes the optimization safe for production environments where Numba availability may vary, while providing massive gains for the larger systems typical in numerical computing workloads.
@codeflash-ai codeflash-ai bot requested a review from aseembits93 January 16, 2026 05:03
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Jan 16, 2026
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant