Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 51 additions & 21 deletions code_to_optimize/sample_code.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,32 +333,62 @@ def tridiagonal_solve_tf(a, b, c, d):
n = tf.shape(b)[0]
dtype = b.dtype

c_prime = tf.zeros([n - 1], dtype=dtype)
d_prime = tf.zeros([n], dtype=dtype)
c0 = c[0] / b[0]
d0 = d[0] / b[0]

def _forward_scan():
a_prev = a[: n - 2]
b_mid = b[1 : n - 1]
c_mid = c[1 : n - 1]
d_mid = d[1 : n - 1]

def fn(acc, elems):
c_prev, d_prev = acc
a_e, b_e, c_e, d_e = elems
denom = b_e - a_e * c_prev
c_new = c_e / denom
d_new = (d_e - a_e * d_prev) / denom
return (c_new, d_new)

c_vals, d_vals = tf.scan(fn, (a_prev, b_mid, c_mid, d_mid), initializer=(c0, d0))
c_prime = tf.concat([tf.reshape(c0, [1]), c_vals], axis=0)
d_prime_partial = tf.concat([tf.reshape(d0, [1]), d_vals], axis=0)
return c_prime, d_prime_partial

def _forward_simple():
return tf.reshape(c0, [1]), tf.reshape(d0, [1])

c_prime, d_prime_partial = tf.cond(tf.greater(n, 2), _forward_scan, _forward_simple)

c_last = c_prime[-1]
d_prev = d_prime_partial[-1]
denom = b[n - 1] - a[n - 2] * c_last
d_last = (d[n - 1] - a[n - 2] * d_prev) / denom
d_prime = tf.concat([d_prime_partial, tf.reshape(d_last, [1])], axis=0)

c_prime = tf.tensor_scatter_nd_update(c_prime, [[0]], tf.reshape(c[0] / b[0], [1]))
d_prime = tf.tensor_scatter_nd_update(d_prime, [[0]], tf.reshape(d[0] / b[0], [1]))
x_last = d_last

_, c_prime, d_prime, _, _, _, _, _ = tf.while_loop(
_tridiagonal_forward_cond_tf,
_tridiagonal_forward_body_tf,
[1, c_prime, d_prime, n, a, b, c, d]
)
def _back_scan():
c_rev = tf.reverse(c_prime, axis=[0])
d_rev = tf.reverse(d_prime[:-1], axis=[0])

c_last = c_prime[n - 2]
d_prev = d_prime[n - 2]
denom = b[n - 1] - a[n - 2] * c_last
d_last = (d[n - 1] - a[n - 2] * d_prev) / denom
d_prime = tf.tensor_scatter_nd_update(d_prime, tf.reshape(n - 1, [1, 1]), tf.reshape(d_last, [1]))
def fn(x_next, elems):
c_e, d_e = elems
x_i = d_e - c_e * x_next
return x_i

x = tf.zeros([n], dtype=dtype)
x = tf.tensor_scatter_nd_update(x, tf.reshape(n - 1, [1, 1]), tf.reshape(d_prime[n - 1], [1]))
x_seq = tf.scan(fn, (c_rev, d_rev), initializer=x_last)
x_rev = tf.reverse(x_seq, axis=[0])
x = tf.concat([x_rev, tf.reshape(x_last, [1])], axis=0)
return x

_, x, _, _ = tf.while_loop(
_tridiagonal_back_cond_tf,
_tridiagonal_back_body_tf,
[n - 2, x, c_prime, d_prime]
)
def _back_simple():
def for_n_eq_2():
x0 = d_prime_partial[0] - c_prime[0] * x_last
return tf.stack([x0, x_last])
return tf.cond(tf.equal(n, 1), lambda: tf.reshape(d / b, [1]), for_n_eq_2)

x = tf.cond(tf.greater(n, 1), _back_scan, _back_simple)

return x

Expand Down
Loading