Enhanced version of VITON-HD with support for upper clothing + pants and improved accuracy. This is the basic model of Virtual Try-on that embedded with StyloMate; Codename Error's project of Hackvidia
- Python 3.9+
- NVIDIA GPU (≥8GB VRAM)
- CUDA 12.8 & cuDNN 8.9.7+
- PyTorch 2.0+
git clone https://github.com/yourusername/VITON-HD-Plus.git
cd VITON-HD-Plusconda create -n vitonhd python=3.9
conda activate vitonhd
pip install -r requirements.txtwget https://huggingface.co/yourusername/vitonhd-plus/resolve/main/checkpoints.zip
unzip checkpoints.zip -d ./checkpointsdatasets/
├── test/
│ ├── image/ # Full-body images (e.g., 01234_00.jpg)
│ ├── cloth_upper/ # Upper clothing images
│ ├── cloth_pants/ # Pants images
│ ├── image-parse/ # Segmentation maps (include pants label)
└── test_pairs.txt # Format: human_image.jpg upper_cloth.jpg pants.jpg
Basic
python test.py \
--name output_demo \
--dataset_mode full_body \
--load_width 768 \
--load_height 1024```Advanced
python test.py \
--use_pants 1 \ # Enable pants processing
--texture_weight 0.7 \ # Fabric preservation strength
--gmm_grid_size 5 \ # Warping precision
--alias_resolution high # Output qualitypython train.py \
--name my_train \
--semantic_nc 14 \ # 13 (original) + 1 pants class
--dataset_dir ./custom_data \
--save_epoch_freq 5Prepare training data:
python scripts/preprocess.py \
--input_dir ./raw_data \
--output_dir ./datasets/trainStart training:
python train.py \
--name my_model \
--epochs 100 \
--batch_size 4 \
--save_freq 10By Seunghwan Choi, Sunghyun Park, Minsoo Lee, Jaegul Choo
@inproceedings{choi2021viton,
title={VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization},
author={Choi, Seunghwan and Park, Sunghyun and Lee, Minsoo and Choo, Jaegul},
booktitle={Proc. of the IEEE conference on computer vision and pattern recognition (CVPR)},
year={2021}
}
Creative Commons By-NC 4.0 © 2025 Ifan Hakim
📧 Contact For support: ifanhakm@gmail.com