Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_pipeline/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_pipeline/__pycache__/build.cpython-36.pyc
Binary file not shown.
40 changes: 40 additions & 0 deletions q01_pipeline/build.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,51 @@
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.feature_selection import RFE
from imblearn.over_sampling import SMOTE
from sklearn.linear_model import LogisticRegression
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import roc_auc_score

bank = pd.read_csv('data/Bank_data_to_class.csv', sep=',')

y = bank['y']
X = bank.drop('y', axis=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=9)
model = GradientBoostingClassifier(random_state=9)
# Write your solution here :
def pipeline(X_train,X_test,y_train,y_test,model):
bank = pd.read_csv('data/Bank_data_to_class.csv', sep=',')
y = bank['y']
X = bank.drop('y', axis=1)
param_grid = {'n_estimators':[10,20,30], 'max_features':[2,4,6,8,12,16], 'max_depth':[2,4,6,8]}
numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
num_features = X_train.select_dtypes(include=numerics).columns.tolist()
cat_features = list(set(X_train.columns.tolist()) - set(num_features))
onehot_en = ['marital','contact','month','job']
label_en = list(set(cat_features) - set(onehot_en))
for val in cat_features:
temp = X_train[X_train[val] != 'unknown'][val].mode()[0]
X_train.loc[X_train[val] == 'unknown',val] = temp
X_test.loc[X_test[val] == 'unknown',val] = temp

encoded_df_train = X_train
encoded_df_test = X_test
le = LabelEncoder()
for val in cat_features:
encoded_df_train[val] = le.fit_transform(encoded_df_train[val])
encoded_df_test[val] = le.fit_transform(encoded_df_test[val])
y_train1 = le.fit_transform(y_train)
y_test1 = le.fit_transform(y_test)
sm = SMOTE(random_state=9)
X_res_train, y_res_train = sm.fit_sample(encoded_df_train,y_train1)
X_res_test, y_res_test = sm.fit_sample(encoded_df_test,y_test1)
#model.fit(X_res_train,y_res_train)
search = GridSearchCV(model, param_grid)
search.fit(X_res_train,y_res_train)
y_pred = search.predict_proba(X_res_test)[:, 1]
auc = roc_auc_score(y_res_test,y_pred)
return search, auc

#print(pipeline(X_train,X_test,y_train,y_test,model))
Binary file modified q01_pipeline/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_pipeline/tests/__pycache__/test_q01_pipeline.cpython-36.pyc
Binary file not shown.