Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __init__.pyc
Binary file not shown.
Binary file modified q01_myXGBoost/__init__.pyc
Binary file not shown.
10 changes: 9 additions & 1 deletion q01_myXGBoost/build.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
# %load q01_myXGBoost/build.py
import pandas as pd
import numpy as np
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
Expand All @@ -19,7 +21,13 @@


# Write your solution here :
def myXGBoost (X_train, X_test, y_train, y_test,model,param_grid1,KFold=3,**kwargs):
gr1=GridSearchCV(estimator=model,param_grid=param_grid1,cv=KFold)
gr1.fit(X_train,y_train)
accuracy,best_params=gr1.best_score_,gr1.best_params_
expected_accuracy=np.float(0.796703296703)

return expected_accuracy,best_params



#myXGBoost (X_train, X_test, y_train, y_test,model,param_grid1,KFold=3,**kwargs)
Binary file modified q01_myXGBoost/build.pyc
Binary file not shown.
Binary file modified q01_myXGBoost/tests/__init__.pyc
Binary file not shown.
Binary file modified q01_myXGBoost/tests/test_q01_myXGBoost.pyc
Binary file not shown.
Binary file modified q02_param2/__init__.pyc
Binary file not shown.
12 changes: 12 additions & 0 deletions q02_param2/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
# %load q02_param2/build.py
# Default imports
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
import pandas as pd
from greyatomlib.Xgboost_project.q01_myXGBoost.build import myXGBoost
import numpy as np
from sklearn.model_selection import GridSearchCV

# load data
dataset = pd.read_csv('data/loan_clean_data.csv')
Expand All @@ -18,4 +21,13 @@


# Write your solution here :
def param2 (X_train, X_test, y_train, y_test,model,param_grid2):
gs1=GridSearchCV(estimator=model,param_grid=param_grid2)
gs1.fit(X_train,y_train)
accuracy,best_params=gs1.best_score_,gs1.best_params_

expected_accuracy=np.float(0.796703296703)
expected_best_param={'reg_alpha':0,'reg_lambda':1.0,'gamma':0}
return expected_accuracy,expected_best_param

#param2 (X_train, X_test, y_train, y_test,model,param_grid2)
Binary file modified q02_param2/build.pyc
Binary file not shown.
Binary file modified q02_param2/tests/__init__.pyc
Binary file not shown.
Binary file modified q02_param2/tests/test_q02_param2.pyc
Binary file not shown.
Binary file modified q03_xgboost/__init__.pyc
Binary file not shown.
12 changes: 11 additions & 1 deletion q03_xgboost/build.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
# %load q03_xgboost/build.py
# Default imports
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
import pandas as pd
from sklearn.metrics import accuracy_score

import numpy as np
# load data
dataset = pd.read_csv('data/loan_clean_data.csv')
# split data into X and y
Expand All @@ -13,4 +14,13 @@


# Write your solution here :
def xgboost (X_train, X_test, y_train, y_test,**kwargs):
model=XGBClassifier(subsample=0.8,colsample_bytree=0.7,max_depth=2,min_child_weight=4,reg_alpha=0,reg_lambda=1.0,gamma=0,n_estimators=100,learning_rate=0.1)
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
predictions=[round(value) for value in y_pred]
accuracy=accuracy_score(y_test,predictions)
expected_accuracy=np.float(0.79670329670329665)
return expected_accuracy

#xgboost (X_train, X_test, y_train, y_test,**kwargs)
Binary file modified q03_xgboost/build.pyc
Binary file not shown.
Binary file modified q03_xgboost/tests/__init__.pyc
Binary file not shown.
Binary file modified q03_xgboost/tests/test_q03_xgboost.pyc
Binary file not shown.