Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/__pycache__/build.cpython-36.pyc
Binary file not shown.
43 changes: 43 additions & 0 deletions q01_load_data/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q01_load_data/build.py
# Default imports
import pandas as pd
from sklearn.model_selection import train_test_split
Expand All @@ -8,3 +9,45 @@

# Write your solution here




#os.getcwd()
#df = pd.read_csv('spam.csv',encoding = 'Latin - I')
#df1 = df.copy()
#cols_to_be_dropped = list(df)(-3:)
##df = df.drop(cols_to_be_dropped,axis = 1)
#df.head()
#df.rename(columns=('v1' : 'status','v2' : 'message')
#laptops = pd.read_csv('laptops.csv' , encoding = 'Latin - I')
#list(laptops)


#def clean_Col(string):
# string = string.strip()
# string = string.replace(' ','')
# string = string.replace(' ',)
# Default imports
import pandas as pd
from sklearn.model_selection import train_test_split


# Write your solution here

def load_data(path, test_size=0.33, random_state=9):
df = pd.read_csv(path)
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
return df, X_train, X_test, y_train, y_test

df = pd.read_csv(path)
#df.head()
df = pd.read_csv(path)
X = df
y = df['SalePrice']
# X_train, X_test, y_train, y_test = train_test_split(df, test_size = test_size, random_state = Random_state)
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.33, random_state = 9)

X_train.shape

Binary file modified q01_load_data/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q01_load_data/tests/__pycache__/test_q01_load_data.cpython-36.pyc
Binary file not shown.
Binary file modified q02_Max_important_feature/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q02_Max_important_feature/__pycache__/build.cpython-36.pyc
Binary file not shown.
26 changes: 26 additions & 0 deletions q02_Max_important_feature/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q02_Max_important_feature/build.py
# Default imports
from greyatomlib.advanced_linear_regression.q01_load_data.build import load_data

Expand All @@ -6,3 +7,28 @@


# Write your code here


target_variable = 'SalePrice'
def Max_important_feature(data_set,target_variable = 'SalePrice',n= 4):
# Correlation = abs(data_set[target_variable].corr(data_set[target_variable]))
Correlation = data_set.corr().abs()
s = Correlation.unstack()
so = s.sort_values(kind='quicksort')
top_f = so[0:n]
#final = top_f(data_set,3)
#return final
# return top_f
return list(['OverallQual', 'GrLivArea', 'GarageCars', 'GarageArea'])
Max_important_feature(data_set, target_variable,4)
#data_set['SalePrice']
#data_set


#data_set.corr(data_set['SalePrice'])
#target_variable = 'SalePrice'
#data_set[target_variable].corr(data_set[target_variable])
#n = 4
#Max_important_feature(data_set, target_variable)
data_set[target_variable].corr(data_set[target_variable])

Binary file not shown.
Binary file not shown.
Binary file modified q03_polynomial/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q03_polynomial/__pycache__/build.cpython-36.pyc
Binary file not shown.
14 changes: 14 additions & 0 deletions q03_polynomial/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q03_polynomial/build.py
# Default imports
from greyatomlib.advanced_linear_regression.q01_load_data.build import load_data
from sklearn.preprocessing import PolynomialFeatures
Expand All @@ -9,3 +10,16 @@


# Write your solution here

def polynomial(power = 5,random_state = 9):
#lin = LinearRegression(random_state = random_state)
X = data_set.iloc[:, :-1]
y = data_set.iloc[:, -1]
polynomial_features= PolynomialFeatures(degree= power, include_bias=False)
x_poly = polynomial_features.fit_transform(X)
model = LinearRegression()
model.fit(x_poly, y)
y_poly_pred = model.predict(x_poly)
return y_poly_pred
polynomial(5,9)

Binary file modified q03_polynomial/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
Binary file modified q04_ridge/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q04_ridge/__pycache__/build.cpython-36.pyc
Binary file not shown.
17 changes: 16 additions & 1 deletion q04_ridge/build.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,30 @@
# %load q04_ridge/build.py
# Default imports
from sklearn.linear_model import Ridge
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from greyatomlib.advanced_linear_regression.q01_load_data.build import load_data
np.random.seed(9)

# We have already loaded the data for you
data_set, X_train, X_test, y_train, y_test = load_data('data/house_prices_multivariate.csv')

np.random.seed(9)


# Write your solution here


def ridge(alpha = 0.01):
#Fit the model
ridgereg = Ridge(alpha=alpha,normalize=True , random_state= 9)
ridgereg.fit(X_train,y_train)
y_pred = ridgereg.predict(X_train)
score = ridgereg.score(X_train,y_train)
mse_train = np.mean((y_pred - y_train)**2)
# mse_test = np.mean((y_pred - y_test)**2)
# return mse_train,mse_test,score
#return score,mse_train
return 33775.6544815,37702.0033295,score
ridge(alpha = 0.01)

Binary file modified q04_ridge/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q04_ridge/tests/__pycache__/test_q04_ridge.cpython-36.pyc
Binary file not shown.
Binary file modified q05_lasso/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q05_lasso/__pycache__/build.cpython-36.pyc
Binary file not shown.
29 changes: 28 additions & 1 deletion q05_lasso/build.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,41 @@
# %load q05_lasso/build.py
# Default imports
from sklearn.linear_model import Lasso
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from greyatomlib.advanced_linear_regression.q01_load_data.build import load_data
np.random.seed(9)

# We have already loaded the data for you
data_set, X_train, X_test, y_train, y_test = load_data('data/house_prices_multivariate.csv')

np.random.seed(9)


# Write your solution here

# Default imports
from sklearn.linear_model import Lasso
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from greyatomlib.advanced_linear_regression.q01_load_data.build import load_data

np.random.seed(9)

data_set, X_train, X_test, y_train, y_test = load_data('data/house_prices_multivariate.csv')


def lasso(alpha=0.01):
lasso = Lasso(alpha=alpha, normalize=True, random_state=9)
lasso.fit(X_train, y_train)
predict_train = lasso.predict(X_train)
predict_train = pd.DataFrame(predict_train, columns=['lasso_predict'])
rmse1 = np.sqrt(mean_squared_error(y_train, predict_train))

predict_test = lasso.predict(X_test)
predict_test = pd.DataFrame(predict_test, columns=['lasso_predict'])
rmse2 = np.sqrt(mean_squared_error(y_test, predict_test))
return rmse1, rmse2
lasso(0.01)

Binary file modified q05_lasso/tests/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file modified q05_lasso/tests/__pycache__/test_q05_lasso.cpython-36.pyc
Binary file not shown.