Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 20 additions & 2 deletions q01_plot/build.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,26 @@
# %load q01_plot/build.py

import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

data = pd.read_csv('data/house_prices_multivariate.csv')
plt.switch_backend('agg')
# Write your code here:
num_cols = ['LotArea', 'GarageArea', 'OpenPorchSF', 'SalePrice']
def plot(num_cols):
for i in range(0,len(num_cols),2):
if len(num_cols) > i+1:
plt.figure(figsize=(10,4))
plt.subplot(121)
sns.distplot(data[num_cols[i]], kde=False)
plt.subplot(122)
sns.distplot(data[num_cols[i+1]], kde=False)
plt.tight_layout()
plt.show()

else:
sns.distplot(data[num_cols[i]], kde=False)




# Write your code here :
16 changes: 14 additions & 2 deletions q02_plot/build.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,23 @@
# %load q02_plot/build.py
# Default imports
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_csv('data/house_prices_multivariate.csv')
plt.switch_backend('agg')


num_cols = ['LotArea','GarageArea','OpenPorchSF','SalePrice']
# Write your code here:
# %matplotlib inline

def plot(num_cols):

f, axs = plt.subplots(2, 2, figsize=(7, 7), sharex=False)
sns.boxplot(data['LotArea'],ax= axs[0,0])
sns.boxplot(data['GarageArea'],ax=axs[0,1])
sns.boxplot(data['OpenPorchSF'],ax=axs[1,0])
sns.boxplot(data['SalePrice'],ax=axs[1,1])




6 changes: 5 additions & 1 deletion q03_regression_plot/build.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# %load q03_regression_plot/build.py
# Default imports

import pandas as pd
Expand All @@ -6,10 +7,13 @@


data = pd.read_csv('data/house_prices_multivariate.csv')
plt.switch_backend('agg')


# Write your code here
def regression_plot(variable1,variable2):
return sns.lmplot(variable1, variable2, data=data, fit_reg=True)





Expand Down
9 changes: 8 additions & 1 deletion q04_cor/build.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,17 @@
# %load q04_cor/build.py
# Default imports
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_csv('data/house_prices_multivariate.csv')
plt.switch_backend('agg')


# Write your code here
def cor(data):
return sns.heatmap(data.corr(), cmap='viridis')