Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added __pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file added q01_bagging/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file added q01_bagging/__pycache__/build.cpython-36.pyc
Binary file not shown.
33 changes: 29 additions & 4 deletions q01_bagging/build.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,43 @@
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score

# Data Loading
dataframe = pd.read_csv('data/loan_prediction.csv')

X = dataframe.iloc[:, :-1]
y = dataframe.iloc[:, -1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=9)


# Write your code here
scores1=[]
scores2=[]
def bagging(X_train, X_test, y_train, y_test,n_est):
n_est=51
estimators=range(1,n_est)
decision_clf = DecisionTreeClassifier()

for est in estimators:
bagging_clf = BaggingClassifier(decision_clf, n_estimators=est, max_samples=0.67,max_features=0.67,
bootstrap=True, random_state=9)
bagging_clf.fit(X_train, y_train)
# test line
y_pred_bagging1 = bagging_clf.predict(X_test)
score_bc_dt1 = accuracy_score(y_test, y_pred_bagging1)
scores1.append(score_bc_dt1)
# train line
y_pred_bagging2 = bagging_clf.predict(X_train)
score_bc_dt2 = accuracy_score(y_train, y_pred_bagging2)
scores2.append(score_bc_dt2)

plt.figure(figsize=(10, 6))
plt.title('Bagging Info')
plt.xlabel('Estimators')
plt.ylabel('Scores')
plt.plot(estimators,scores1,'g',label='test line', linewidth=3)
plt.plot(estimators,scores2,'c',label='train line', linewidth=3)
plt.legend()
plt.show()


Binary file not shown.
Binary file not shown.
Binary file added q02_stacking_clf/__pycache__/__init__.cpython-36.pyc
Binary file not shown.
Binary file not shown.
32 changes: 32 additions & 0 deletions q02_stacking_clf/build.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,5 +14,37 @@

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=9)

# Solution
# Write your code here

clf1 = LogisticRegression(random_state=9)
clf2 = DecisionTreeClassifier(random_state=9)
clf3 = DecisionTreeClassifier(max_depth=9, random_state=9)

bagging_clf1 = BaggingClassifier(clf2, n_estimators=100, max_samples=100,
bootstrap=True, random_state=9, oob_score=True)
bagging_clf2 = BaggingClassifier(clf1, n_estimators=100, max_samples=100,
bootstrap=True, random_state=9, oob_score=True)
bagging_clf3 = BaggingClassifier(clf3, n_estimators=100, max_samples=100,
bootstrap=True, random_state=9, oob_score=True)

model = [bagging_clf1, bagging_clf2, bagging_clf3]


def stacking_clf(model, X_train, y_train, X_test, y_test):
predictions = []
for i in model:
i.fit(X_train, y_train)
pred = np.array(i.predict_proba(X_train))
predictions.append(pred)
X_bag_train = np.concatenate((predictions[0], predictions[1], predictions[2]), axis=1)
predictions_test = []
for j in model:
pred = np.array(j.predict_proba(X_test))
predictions_test.append(pred)
X_bag_test = np.concatenate((predictions_test[0], predictions_test[1], predictions_test[2]), axis=1)
predictions_bag_final = clf1.fit(X_bag_train, y_train).predict(X_bag_test)
return accuracy_score(y_test, predictions_bag_final)



Binary file not shown.
Binary file not shown.