SpendSense is an expense tracking mobile application developed to enhance personal financial management with advanced vision language model for receipt scanning.
- AI Recipt scanning by taking picture or pick from photos
- Adding expense records from scanning receipt or manual input
- Dashboard for spending pattern visualization and analysis
- Detail Daily and monthly expenses records
-
Install dependencies
npm install -
Modify the env.js for the Recipt scanning service api
export const API_URL = http://HOST:8085/api/v1/inference -
Start the app
npx expo startor
npx expo start --tunnel -
Connect to the app by scanning the QR code above with Expo Go (Android) or the Camera app (iOS)
- Create virtual environment
conda create -n vlm_model python=3.9
conda activate vlm_model
pip install -r requirment.py
- Modify the backend service host and port in the .env file
MODEL_BACKEND_HOST = "0.0.0.0"
MODEL_BACKEND_PORT = "8085"
- Start the server
python main.py
Now the api is serving at 'http://HOST:8085/api/v1/inference'
def test_qwen_re(image_path):
base64_image = encode_image2base64(image_path)
response = requests.post(
"http://localhost:8085/api/v1/inference", json={"base64_string": base64_image}
)
print(response)
return response
if __name__ == "__main__":
receipt_result = test_qwen_re("sample_image.jpeg")
print(receipt_result)
Result will be extracted in below format
{
'Merchant': 'PARKnSHOP (HK) Limited',
'Date': '06/03/25',
'Amount': '$10.50',
'Category': 'Shopping'
}



