Skip to content

Commit a47e861

Browse files
committed
Update notes
1 parent f363c1c commit a47e861

File tree

3 files changed

+36
-5
lines changed

3 files changed

+36
-5
lines changed

notes/Master.bib

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,26 @@
1+
@article{agrawal2024automated,
2+
title = {Automated efficient estimation using monte carlo efficient influence functions},
3+
author = {Agrawal, Raj and Witty, Sam and Zane, Andy and Bingham, Elias},
4+
journal = {Advances in Neural Information Processing Systems},
5+
volume = {37},
6+
pages = {16102--16132},
7+
year = {2024}
8+
}
9+
@article{baydin2018automatic,
10+
title = {Automatic differentiation in machine learning: a survey},
11+
author = {Baydin, Atilim Gunes and Pearlmutter, Barak A and Radul, Alexey Andreyevich and Siskind, Jeffrey Mark},
12+
journal = {Journal of machine learning research},
13+
volume = {18},
14+
number = {153},
15+
pages = {1--43},
16+
year = {2018}
17+
}
18+
19+
@article{paszke2017automatic,
20+
title = {Automatic differentiation in pytorch},
21+
author = {Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and Antiga, Luca and Lerer, Adam},
22+
year = {2017}
23+
}
124
@article{wang2025causal,
225
title = {Causal Inference: A Tale of Three Frameworks},
326
author = {Wang, Linbo and Richardson, Thomas and Robins, James},

notes/main.typ

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -320,6 +320,14 @@ Formulation in @van1991differentiable
320320
=== Numerical calcaulation of influence function
321321
@mukhinkernel
322322
@jordan2022empirical
323+
@agrawal2024automated
324+
325+
326+
Automatic differentiation is remarkable! By building in all basic differentiable operations such as addition, multiplication, sine, and exponential functions, it calculates every derivative value and uses the chain rule to combine them, yielding derivatives equivalent to those computed by exact formulas.
327+
@paszke2017automatic @baydin2018automatic
328+
329+
A conversation with #link("https://chat.qwen.ai/s/91761ba1-a011-4804-8f3d-38eadcc90472?fev=0.1.10")[Qwen]. The delta method used to estimate the variance of coefficients in our work @chen2024method requires computing numerical derivatives of a complex mapping involving nonlinear function solving and integration. This can be made differentiable using "AD"-friendly functions in the implementation. Therefore, #link("https://github.com/cxy0714/Method-of-Moments-Inference-for-GLMs/blob/main/demo_glm_MoM/function_of_glm_mom.R")[our R code] could be replaced with more powerful Python code.
330+
323331
=== Von mise representation
324332

325333
=== Tangent space
@@ -332,13 +340,13 @@ S8 in @graham2024towards
332340

333341
@wang2024multi used a little different neyman orthogonality. Their problem can be summarized by following:
334342

335-
When the model is $X ~ PP_( theta, overline(eta))$ where $overline(eta)$ is the (nuisance) parameter and $theta$ is the finite dimensional parameter of interest and $ theta = R( overline(eta) ) = limits("max")_(eta) R( eta )$ where $ R(eta) = EE_(X)L(X;eta)$ and $L$ is a loss function.
343+
When the model is $X ~ PP_( theta, overline(eta))$ where $overline(eta)$ is the (nuisance) parameter and $theta$ is the finite dimensional parameter of interest and $theta = R( overline(eta) ) = limits("max")_(eta) R( eta )$ where $R(eta) = EE_(X)L(X;eta)$ and $L$ is a loss function.
336344

337-
$ theta = EE_(X) L(X; overline(eta) ) = limits("max")_(eta) EE_(X) L(X; eta) $
345+
$ theta = EE_(X) L(X; overline(eta) ) = limits("max")_(eta) EE_(X) L(X; eta) $
338346

339-
Then $ psi (X;eta) := L(X;eta)$ naturally satisfies that the Gâteaux derivative of $eta$ is always zero in $overline(eta)$:
347+
Then $psi (X;eta) := L(X;eta)$ naturally satisfies that the Gâteaux derivative of $eta$ is always zero in $overline(eta)$:
340348

341-
$ & frac(partial EE_(X) [psi (X; eta_0 + t(eta - eta_0))] , partial t) |_(t = 0) =0, forall eta. \ $
349+
$ & frac(partial EE_(X) [psi (X; eta_0 + t(eta - eta_0))], partial t) |_(t = 0) =0, forall eta. \ $
342350

343351
The parameterization need to check, if in above setting, $theta$ is totally determined by $overline(eta)$.
344352

@@ -412,7 +420,7 @@ e-valuede 的#link("https://sas.uwaterloo.ca/~wang/")[王若度](U of Waterloo
412420

413421
== Varibale importance
414422

415-
=== Leave-One-Covariate-Out(LOCO)
423+
=== Leave-One-Covariate-Out(LOCO)
416424

417425
@lei2018distribution give a measure named loco:
418426
$ I_x = l( y, f(x,z) ) - l( y, f(z) ) $

static/notes/notes.pdf

-229 KB
Binary file not shown.

0 commit comments

Comments
 (0)