vg250 aims to provide access to VG250 dataset in order to derive spatial information for a chosen administrative level for various applications.
Since I found myself in the need of spatial information on a
municipality level (geometry, extent, centroids) for convenience reasons
quite often, the decision was made to centralize associated data and
functions based on {sf} in a separate package to simplify maintenance.
You can install the development version of vg250 with:
# install.packages("devtools")
devtools::install_github("dimfalk/vg250")and load the package via
library(vg250)
#> 0.5.8Just to provide a few quick insights on the use of this package:
# fetch data
name <- "Aachen"
ext <- get_extent(name)
buff <- get_extent(name, buffer = 5000)
geom <- get_geometry(name)
p <- get_centroid(name)
# check classes
class(ext)
#> [1] "sfc_POLYGON" "sfc"
class(buff)
#> [1] "sfc_POLYGON" "sfc"
class(geom)
#> [1] "sfc_POLYGON" "sfc"
class(p)
#> [1] "sfc_POINT" "sfc"
# inspect visually
library(ggplot2)
ggplot() +
geom_sf(data = buff) +
geom_sf(data = ext, col = "green") +
geom_sf(data = geom, col = "red") +
geom_sf(data = p, col = "blue")This information can now be used to e.g. create masks to crop raster data, select vector features, perform spatial joins, construct API calls, etc.
# convert to SpatExtent object when working with `{terra}`
terra::vect(ext) |> terra::ext()
#> SpatExtent : 5.9748614, 6.2169125, 50.6627898, 50.8573535 (xmin, xmax, ymin, ymax)
# select vector features by p
sf::st_filter(vg250, p)
#> Simple feature collection with 1 feature and 5 fields
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: 5.974861 ymin: 50.66279 xmax: 6.216912 ymax: 50.85735
#> Geodetic CRS: WGS 84
#> # A tibble: 1 × 6
#> GEM KRS LAN EWZ KFL geom
#> * <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]>
#> 1 Aachen Städteregion Aachen Nordrhein-W… 252769 161. (((6.057066 50.85417, 6.…
# join attributes spatially to p
sf::st_intersection(vg250, p)
#> Simple feature collection with 1 feature and 5 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 6.109002 ymin: 50.76053 xmax: 6.109002 ymax: 50.76053
#> Geodetic CRS: WGS 84
#> # A tibble: 1 × 6
#> GEM KRS LAN EWZ KFL geom
#> * <chr> <chr> <chr> <dbl> <dbl> <POINT [°]>
#> 1 Aachen Städteregion Aachen Nordrhein-W… 252769 161. (6.109002 50.76053)
# construct API queries
sf::st_bbox(ext) |> as.numeric() |> round(4) |> paste0(collapse = ",") |> paste0("&bbox=", x = _)
#> [1] "&bbox=5.9749,50.6628,6.2169,50.8574"Note: The VG250 dataset itself can be accessed via vg250:
vg250
#> Simple feature collection with 10978 features and 5 fields
#> Geometry type: GEOMETRY
#> Dimension: XY
#> Bounding box: xmin: 5.86625 ymin: 47.27012 xmax: 15.04182 ymax: 55.05878
#> Geodetic CRS: WGS 84
#> # A tibble: 10,978 × 6
#> GEM KRS LAN EWZ KFL geom
#> * <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]>
#> 1 Flensburg Flensburg Schl… 92667 56.7 (((9.412137 54.82382, 9.…
#> 2 Kiel Kiel Schl… 248873 119. (((10.16852 54.43284, 10…
#> 3 Lübeck Lübeck Schl… 219044 214. (((10.87526 53.98833, 10…
#> 4 Neumünster Neumünster Schl… 80185 71.7 (((9.991971 54.14988, 9.…
#> 5 Brunsbüttel Dithmarsch… Schl… 12651 65.2 (((9.166074 53.94532, 9.…
#> 6 Heide Dithmarsch… Schl… 22467 32.0 (((9.121658 54.20769, 9.…
#> 7 Averlak Dithmarsch… Schl… 587 9.06 (((9.212443 53.95312, 9.…
#> 8 Brickeln Dithmarsch… Schl… 191 6.07 (((9.255627 54.02135, 9.…
#> 9 Buchholz Dithmarsch… Schl… 995 14.6 (((9.182763 53.99953, 9.…
#> 10 Burg (Dithmarschen) Dithmarsch… Schl… 4173 11.2 (((9.277097 54.01499, 9.…
#> # ℹ 10,968 more rows