Skip to content

iammehrabalam/Image-classification-using-ConvNet

Repository files navigation

Footwear Image-classification-using-ConvNet And Visually-similar-Recommendation

Dataset

We created our own dataset which contain 30,000 footwear images sourced from
Flipkart, Snapdeal and Amazon. We divided our datasets into twelve class labels.

  • sandals-floaters
  • slippers­flipflop
  • sneakers
  • sports
  • formal
  • loafers
  • ethnic
  • mens­boot
  • flats
  • heels
  • ballerinas
  • womens­boot

Download Dataset

Reference

http://cs231n.stanford.edu/reports/nealk_final_report.pdf

Steps to run the Project

  1. Create a virtualenv and activate it

virtualenv myvenv

source myvenv/bin/activate 2. pip install -r requirement.txt 3. Run topick.py to convert the dataset in pickel format 4. open ipython notebook 5. create a new notebook and run following commands (shift + enter to run notebook's cell code) 6. from input_output import Image_classification 7. obj = Image_classification() 8. obj.training() 9. obj.extract_features()

output of last fully-connected layer 10. obj.testing()
11. obj.visually_similar()

Demo

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •