We created our own dataset which contain 30,000 footwear images sourced from
Flipkart, Snapdeal and Amazon. We divided our datasets into twelve class labels.
- sandals-floaters
- slippersflipflop
- sneakers
- sports
- formal
- loafers
- ethnic
- mensboot
- flats
- heels
- ballerinas
- womensboot
http://cs231n.stanford.edu/reports/nealk_final_report.pdf
- Create a virtualenv and activate it
virtualenv myvenv
source myvenv/bin/activate 2. pip install -r requirement.txt 3. Run topick.py to convert the dataset in pickel format 4. open ipython notebook 5. create a new notebook and run following commands (shift + enter to run notebook's cell code) 6. from input_output import Image_classification 7. obj = Image_classification() 8. obj.training() 9. obj.extract_features()
output of last fully-connected layer
10. obj.testing()
11. obj.visually_similar()