Quantum Geometric Machine Learning (QGML) is a comprehensive framework that combines quantum geometric structures with machine learning. Features dual JAX and PyTorch backends for optimal performance across different computational environments.
- Berry curvature computation and topological invariants
- Quantum metric tensor and geometric loss functions
- Quantum phase transition detection
- JAX Backend: XLA compilation, automatic differentiation, TPU support
- PyTorch Backend: Dynamic graphs, extensive ecosystem, GPU optimization
- Seamless switching: Change backends with single function call
- Genomics analysis with chromosomal instability detection
- High-dimensional manifold learning
- Quantum computing algorithm implementation
- Comprehensive testing across both backends
- Extensive documentation and examples
- Performance benchmarks and optimization guides
import qgml
# Set computational backend
qgml.set_backend("pytorch") # or "jax"
# Create quantum geometric trainer
trainer = qgml.geometry.QuantumGeometryTrainer(
hilbert_dim=8,
feature_dim=4,
backend="auto" # Uses current backend
)
# Analyze quantum geometric properties
analysis = trainer.analyze_complete_quantum_geometry(
data_points,
compute_berry_curvature=True,
compute_chern_numbers=True
)import qgml
# Compare performance across backends
results = qgml.utils.compare_backends(
data=my_dataset,
models=["supervised", "geometric"],
metrics=["speed", "memory", "accuracy"]
)
print(results.summary())| Feature | JAX Backend | PyTorch Backend |
|---|---|---|
| Compilation | XLA (fast) | JIT (moderate) |
| Memory | Efficient | Standard |
| GPU/TPU | Excellent | GPU excellent, no TPU |
| Ecosystem | Scientific | ML/DL focused |
| Debugging | Functional | Imperative |
pip install qgml# PyTorch backend (default)
pip install qgml[pytorch]
# JAX backend
pip install qgml[jax]
# Both backends
pip install qgml[full]git clone https://github.com/jasonlarkin/qgml.git
cd qgml
pip install -e .[dev]- Genomics: Chromosomal instability analysis
- Physics: Quantum phase transitions and topological states
- Finance: High-dimensional manifold learning for risk analysis
- Quantum Computing: Algorithm design and quantum advantage analysis
We welcome contributions! Please see CONTRIBUTING.md.
@software{qgml2024,
title={QGML: Quantum Geometric Machine Learning with Dual Backend Support},
author={Jason Larkin},
year={2024},
url={https://github.com/jasonlarkin/qgml}
}MIT License - see LICENSE for details.