The MuHeQA (Multiple and Heterogeneous Question-Answering) system creates natural language answers from natural language questions using knowledge base from both structured (KG) and unstructured (documents) data sources.
Install the muheqa package:
pip install muheqaCreate a new connection to Wikidata, or DBpedia, or D4C (Drugs4Covid). The first time it may take a few minutes to download the required models:
import muheqa.connector as mhqa
wikidata = mhqa.connect(wikidata=True)And finally, make a question in natural language!:
response = wikidata.query("Who is the father of Barack Obama")
print("Response:",response)- Prepare a Python 3 environment and install the Conda framework.
- Clone this repo:
git clone https://github.com/librairy/MuHeQA.git - Move into the root directory:
cd MuHeQA - Create an environment (if it does not already exist):
conda create --name .muheqa python=3.9 - Activate the environment:
conda activate .muheqa - Download the answer classifier and unzip into the root project directory. The folder
resources_dir/is created.wget -O resources.zip https://delicias.dia.fi.upm.es/nextcloud/index.php/s/Jp5FeoBn57c8k4M/download unzip resources.zip - Install dependencies
pip install -r requirements.txt
- Install TensorFlow dependencies
conda install -c apple tensorflow-deps - Install base TensorFlow
pip install tensorflow-macos - Install tensorflow-metal plugin
pip install tensorflow-metal