Skip to content

lsawfa/Mental-Health-Classification

Repository files navigation

Overview

This document evaluates the performance of various machine learning (ML) and deep learning (DL) models across different datasets, using key metrics such as F1-Macro (F1-Mac), Precision-Macro (P-Mac), Recall-Macro (R-Mac), F1-Micro (F1-Mic), Precision-Micro (P-Mic), Recall-Micro (R-Mic), and their average.

Method Type F1-Mac P-Mac R-Mac F1-Mic P-Mic R-Mic Avg.
Dataset 1
SVM ML 0.46 0.71 0.42 0.62 0.75 0.52 0.58
Light GBM ML 0.58 0.48 0.80 0.65 0.52 0.86 0.65
XGBoost ML 0.57 0.62 0.54 0.65 0.69 0.62 0.62
GAN-BERT DL 0.70 0.69 0.72 0.75 0.73 0.77 0.73
BERT DL 0.74 0.72 0.77 0.79 0.76 0.83 0.77
BART DL 0.76 0.70 0.81 0.80 0.74 0.86 0.78
Dataset 2
SVM ML 0.04 0.04 0.04 0.07 0.13 0.04 0.06
Light GBM ML 0.04 0.03 0.03 0.06 0.12 0.04 0.05
XGBoost ML 0.06 0.06 0.05 0.07 0.10 0.05 0.07
GAN-BERT DL 0.17 1.00 0.10 0.17 1.00 0.10 0.56
BERT DL 0.80 0.81 0.80 0.79 0.79 0.79 0.79
BART DL 0.32 0.34 0.46 0.39 0.35 0.45 0.39
Dataset 3
SVM ML 0.12 0.25 0.11 0.16 0.26 0.12 0.17
Light GBM ML 0.13 0.26 0.13 0.17 0.26 0.13 0.18
XGBoost ML 0.12 0.25 0.11 0.16 0.26 0.12 0.17
GAN-BERT DL 0.50 0.56 0.62 0.54 0.50 0.60 0.55
BERT DL 0.90 0.91 0.90 0.90 0.90 0.90 0.90
BART DL 0.85 0.87 0.86 0.88 0.85 0.87 0.86

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published