Skip to content

mattv8/ragtime

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ragtime

Self-hosted, OpenAI-compatible RAG API + MCP server that plugs local knowledge into existing LLM clients.

Build Container Signed SBOM License: MIT

Contributing Guide

Screenshot 1 Screenshot 2

Features

  • OpenAI-compatible /v1/chat/completions endpoint with streaming: works with OpenWebUI, Continue, and any OpenAI client
  • Built-in chat UI at / with tool visualization, interactive charts, and DataTables: no external client required
  • MCP server (HTTP Streamable + stdio transports) exposing tools to Claude Desktop, VS Code Copilot, Cursor, and JetBrains IDEs with auth
  • Dual vector store: FAISS for uploaded/git-cloned indexes, pgvector for filesystem/schema/PDM indexes (details)
  • LangChain tool calling: PostgreSQL, MSSQL, MySQL/MariaDB, Odoo ORM, SSH shell: read-only by default, write-ops opt-in
  • Auto-discovered tools: drop a <name>_tool StructuredTool in ragtime/tools/ and it registers at startup (see CONTRIBUTING.md)
  • Tool security: SQL injection prevention via allowlist patterns, LIMIT enforcement, Odoo code validation, optional write-ops flag
  • Auth: Local admin + optional LDAP, rate-limited login, encrypted secrets (Fernet), httpOnly session cookies

Architecture

flowchart LR
  Tools["Tools<br/>(SQL, SSH, Odoo)"] -->|tool runs + results| Ragtime
  Context["Knowledge Sources<br/>(FAISS, pgvector)"] -->|retrieved context| Ragtime
  LLM["LLM Provider<br/>(OpenAI, Anthropic, Ollama)"] -->|LLM API| Ragtime

  subgraph Ragtime["Ragtime"]
    direction TB
    API["/v1/chat/completions"]
    MCP["/mcp"]
    UI["Web UI"]
  end

  Ragtime -->|chat responses| Clients["Clients<br/>(OpenWebUI, Claude, VS Code)"]
  Clients -->|chat queries| Ragtime

  style Ragtime fill:#1a365d,stroke:#3182ce,stroke-width:3px,color:#fff
Loading

Vector Store Abstraction

Ragtime uses two vector backends, chosen per index type: FAISS for in-memory, static indexes (Upload, Git) and pgvector for persistent, scalable indexes (Filesystem, Schema, PDM).

See Creating Indexes for a detailed breakdown of index types and their storage backends.

FAISS indexes are loaded into memory at startup; pgvector indexes stay in PostgreSQL and use cosine similarity search. Embedding provider (OpenAI or Ollama) is configured once in Settings and applies to all index types. Swapping embedding model or dimensions after initial indexing requires a full re-index.

Who This Is For / Not For

Good fit: Teams that want to query internal docs and databases through existing chat UIs without shipping data to third-party RAG SaaS: especially if you already run OpenWebUI, Claude Desktop, or VS Code with MCP.

Not a fit: If you need multi-tenant SaaS, fine-grained RBAC beyond admin/user, or sub-second latency at scale, consider managed solutions or a custom LangServe deployment.

Table of Contents

Quick Start

Prerequisites

  • Docker and Docker Compose
  • A .env file with your configuration

Setup

  1. Create environment file:

Create a file named .env with the following content (you can also copy from the full example in .env.example):

Click to expand .env template
# =============================================================================
# Ragtime RAG API - Environment Configuration
# =============================================================================
# Copy this file to .env and fill in your values

# -----------------------------------------------------------------------------
# Database Configuration
# -----------------------------------------------------------------------------
# PostgreSQL password (used by both database container and ragtime)
POSTGRES_PASSWORD=changeme

# -----------------------------------------------------------------------------
# Authentication Configuration
# -----------------------------------------------------------------------------
# Local admin account credentials
LOCAL_ADMIN_USER=admin
LOCAL_ADMIN_PASSWORD=changeme_admin

# -----------------------------------------------------------------------------
# Server Configuration
# -----------------------------------------------------------------------------
# API port (default: 8000)
PORT=8000

# CORS allowed origins (comma-separated, or * for all)
ALLOWED_ORIGINS=*

# -----------------------------------------------------------------------------
# Security Configuration
# -----------------------------------------------------------------------------
# API Key for OpenAI-compatible endpoint authentication (REQUIRED)
# Generate with: openssl rand -base64 32
API_KEY=

# HTTPS: Enable built-in TLS with self-signed certificate (auto-generated on first run)
# To use your own certs, place them at ./data/ssl/server.crt and ./data/ssl/server.key
# ENABLE_HTTPS=true

# Set to true if behind an HTTPS reverse proxy (nginx, Caddy, Traefik)
# This marks cookies as Secure. Auto-enabled when ENABLE_HTTPS=true.
SESSION_COOKIE_SECURE=false

############################################################
# Developer Only - Typically do not modify below this line #
############################################################

# Debug mode (enables verbose logging and hot-reload)
DEBUG_MODE=false

# Database URL (auto-configured by docker-compose, override for external DB)
# DATABASE_URL=postgresql://ragtime:password@hostname:5432/ragtime
  1. Edit .env and configure your specific values (see .env.example for the complete sample file)

  2. Create docker-compose.yml:

    Create a file named docker-compose.yml with the following content:

    Click to expand docker-compose.yml
    # =============================================================================
    # Ragtime - Self-Hosted Docker Compose
    # =============================================================================
    # For self-hosted deployment. See README.md for setup instructions.
    #
    # Usage:
    #   1. Create .env file with your configuration
    #   2. docker compose up -d
    #   3. Access at http://localhost:${PORT:-8000}
    
    services:
      # PostgreSQL database for Prisma persistence
      ragtime-db:
        image: pgvector/pgvector:pg18
        container_name: ragtime-db
        restart: unless-stopped
        environment:
          POSTGRES_USER: ragtime
          POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
          POSTGRES_DB: ragtime
        volumes:
          - ragtime-db-data:/var/lib/postgresql
        networks:
          - ragtime-network
        healthcheck:
          test: ["CMD-SHELL", "pg_isready -U ragtime -d ragtime"]
          interval: 10s
          timeout: 5s
          retries: 5
    
      # Ragtime RAG API
      ragtime:
        # For older CPUs without X86_V2 support, use the legacy tag:
        # image: hub.docker.visnovsky.us/library/ragtime:legacy
        image: hub.docker.visnovsky.us/library/ragtime:main
        container_name: ragtime
        restart: unless-stopped
        ports:
          - "${PORT:-8000}:8000"
        env_file:
          - .env
        environment:
          # Database connection (uses container network)
          DATABASE_URL: postgresql://ragtime:${POSTGRES_PASSWORD}@ragtime-db:5432/ragtime
          # Recommended defaults
          DEBUG_MODE: "false"
        volumes:
          # Data persistence (indexes, SSL certs, etc.)
          - ./data:/data
          # Docker socket for container exec (optional, for tool execution)
          - /var/run/docker.sock:/var/run/docker.sock:ro
        # Uncomment below if using SMB/NFS mounting inside container (consider mounting via docker volume instead)
        # privileged: true
        # cap_add:
        #   - SYS_ADMIN
        networks:
          - ragtime-network
        depends_on:
          ragtime-db:
            condition: service_healthy
        healthcheck:
          # -k allows self-signed certs; checks http first, falls back gracefully
          test: ["CMD", "sh", "-c", "curl -fsk https://localhost:8000/health 2>/dev/null || curl -fs http://localhost:8000/health"]
          interval: 30s
          timeout: 10s
          retries: 3
          start_period: 15s
    
    networks:
      ragtime-network:
        driver: bridge
    
    volumes:
      ragtime-db-data:

    Note: All configuration variables are loaded from the .env file via env_file. The environment section only overrides DATABASE_URL to use the container network.

  3. Start the application:

    docker compose up -d
  4. Access the application:

    Default credentials: admin / (set via LOCAL_ADMIN_PASSWORD in .env)

Tool Configuration

Before you connect Ragtime to MCP clients, configure tools in the Ragtime web UI so they are ready for use:

  1. Open the web UI at http://localhost:8000 and log in with your admin account.
  2. Navigate to the Tools tab.
  3. Click Add Tool and select the tool type (PostgreSQL, Odoo, SSH, filesystem indexer, etc.).
  4. Fill in connection details (hostnames, credentials, database names, paths) for each tool.
  5. Use the built-in test button to verify each tool connection.

Only tools that pass their health checks are exposed to chat and MCP clients. Configure and verify your tools here before following the MCP Integration section below.

Creating Indexes

The Indexer UI (http://localhost:8000, Indexes tab) supports multiple index types:

Method Vector Store Storage Use Case
Upload (zip/tar) FAISS data/indexes/<name>/ Static codebases, documentation snapshots
Git Clone FAISS data/indexes/<name>/ Repositories with optional private token auth
Filesystem pgvector filesystem_chunks table Live SMB/NFS shares, Docker volumes, local paths: incremental re-index
Schema pgvector schema_embeddings table Auto-generated from PostgreSQL/MSSQL/MySQL tools (enable in Tool Configuration)
PDM pgvector pdm_embeddings table SolidWorks PDM metadata via SQL Server

Jobs run async with progress streaming to the UI.

Model Context Protocol (MCP) Integration

Ragtime exposes its tools via the Model Context Protocol, allowing AI coding assistants to interact with your databases, execute shell commands, and search your indexed codebases.

Available MCP Tools

Tools are dynamically exposed based on what you configure in the UI:

Tool Type Input Schema
postgres {query, reason}
mssql {query, reason}
mysql {query, reason}
odoo_shell {code, reason}
ssh_shell {command, reason}
filesystem_indexer {query, max_results}
knowledge_search {query, index_name}
schema_search {prompt, limit}
git_history {action, ...}

MCP Server Setup

HTTP Transport (Recommended)

Ragtime exposes an MCP endpoint at /mcp that supports the Streamable HTTP transport. Add this to your MCP client configuration:

{
	"servers": {
		"ragtime": {
			"url": "http://localhost:8000/mcp",
			"type": "http",
			// If you've enabled MCP authentication in the Ragtime Settings UI (Settings > MCP Configuration), add the `MCP-Password` header:
			// "headers": {
			//   "MCP-Password": "your-mcp-password-here"
			// }
		}
	},
	"inputs": []
}

NOTE: For remote access, replace localhost:8000 with your server URL.

Stdio Transport (Alternative)

For local development or environments where HTTP isn't preferred, use stdio transport via Docker:

{
  "mcpServers": {
    "ragtime": {
      "command": "docker",
      "args": ["exec", "-i", "ragtime", "python", "-m", "ragtime.mcp"]
    }
  }
}

Replace ragtime with your container name if different (find it with docker ps).

Configuration file locations:

  • Claude Desktop: ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or %APPDATA%\Claude\claude_desktop_config.json (Windows)
  • VS Code / Copilot: User or workspace MCP settings
  • Cursor: .cursor/mcp.json
  • Windsurf: ~/.codeium/windsurf/mcp_config.json

Connecting to OpenWebUI

  1. In OpenWebUI, go to Settings > Connections > OpenAI API
  2. Add a new connection:
    • API Base URL: http://ragtime:8000/v1 (or http://localhost:8000/v1 if running locally)
    • API Key: Your configured API_KEY (or any value if not set)
  3. Select your server's model name (default: "ragtime", configurable in Settings > Server Branding)

Security

Ragtime is designed for self-hosted deployment on trusted networks. Review these recommendations before exposing it beyond localhost:

CI builds each push; main-branch images are Cosign-signed and ship with an SPDX SBOM artifact (linked from the badges above and workflow runs) so you can verify what you pull from the registry.

Network & Access

  • Run behind a reverse proxy or firewall. Avoid exposing port 8000 directly to the public internet.
  • Set API_KEY to protect the /v1/chat/completions endpoint. When unset (the default), anyone with network access can call the chat API and invoke your configured tools.
  • Restrict ALLOWED_ORIGINS to trusted domains. The default * with allow_credentials=True permits cross-site requests that carry session cookies, which may be exploitable if the server is publicly reachable.
  • Enable MCP route authentication via Settings UI if /mcp is network-accessible. By default the MCP endpoint is open without auth.
  • Set a strong LOCAL_ADMIN_PASSWORD when deploying.

Authentication Security

  • Encryption key is auto-generated on first startup and stored at data/.encryption_key. Include this file in your backups using backup --include-secret or your encrypted secrets will be unrecoverable.
  • Rate limiting protects the login endpoint (5 attempts/minute per IP) to prevent brute-force attacks.

Debug Mode Warning

Do not use DEBUG_MODE=true outside local development. When enabled, the /auth/status endpoint exposes your admin username and password in plaintext. This is intentional for self-hosted debugging but dangerous if the server is accessible to untrusted users.

SSH Connections

The SSH tool uses Paramiko with AutoAddPolicy, which accepts any host key without verification. This makes SSH connections vulnerable to man-in-the-middle attacks on first connect. Only use the SSH tool on trusted networks or with hosts you have verified out-of-band.

Docker & Mounts

  • The default compose files include mounts for docker.sock and optional privileged flags to support advanced tool features (container exec, SSH tunnels, NFS/SMB mounts).
  • If you do not need these features, remove or comment out the corresponding lines in your compose file.
  • For NFS/SMB filesystem indexing, the container may require elevated privileges. Consider the security implications before enabling privileged: true or SYS_ADMIN capabilities.

Third-Party Data Relay

Queries and tool calls may forward your data to external services you configure (OpenAI, Anthropic, Ollama, PostgreSQL, MSSQL, SSH hosts). Only connect to services you trust with your data.

Updating

To update to the latest version:

docker compose pull
docker compose up -d

Troubleshooting

NumPy CPU Compatibility Error

If you see an error like:

RuntimeError: NumPy was built with baseline optimizations (X86_V2) but your machine doesn't support (X86_V2)

Your CPU lacks the X86_V2 instruction set required by modern NumPy binaries. Use the legacy image instead:

image: hub.docker.visnovsky.us/library/ragtime:legacy

This image builds NumPy from source without CPU-specific optimizations.

Contributing

See CONTRIBUTING.md for development setup, making changes, and CI/CD details.

License

MIT: see LICENSE.

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •