SentiGAT: A Graph Attention Network-Based Framework for Feature Fusion and Alignment to Enhance Multimodal Sentiment Analysis
A graph attention network (GAT)-based framework for enhanced multimodal sentiment analysis.
- Download and extract both MVSA-single and MVSA-multiple datasets from (https://mcrlab.net/research/mvsa-sentiment-analysis-on-multi-view-social-data/)
- Store the data in the data/ folder.
- data/ folder:
- 10-fold train/val/test splits (0-indexed) provided in data/ folder for each dataset.
- valid_pairs.txt contain
file_id, target_label, text_label, image_labelfor each valid pair of text-image. 0: Neutral, 1: Positive, and 2: Negative
- Create an environment using environment.yml with conda.
- Textual feature extraction,
python extract/extract_text.py --mvsa single - Visual feature extraction (facial expression),
python extract_face.py --mvsa single --enable-visual - Similarly, extract visual features such as global, object, and image-embedded text.
- To train and evaluate the model,
python models/SentiGAT.py --mvsa single --batch-size 32 --lr 1e-4 --epochs 20 --splits 1 --drop-out 0.5 --hidden-dim 512