This repo deals with processing data from existing datasets for Sensor Stream Pipe processing.
The Sensor Stream Pipe frame format was created to be compatible with existing RGB-D datasets with separate RGB and depth frames- It has the following structure:
<dataset name>;<device id>;<sensor id>;<frame type>;<fps>
<number of frames>
<frame id>;<frame path>
<frame id>;<frame path>
<frame id>;<frame path>
....
Example:
bundle_fusion_apt0;0;0;0;30
8560
0;/home/amourao/data/bundle_fusion/apt0/frame-000000.color.jpg
1;/home/amourao/data/bundle_fusion/apt0/frame-000001.color.jpg
....
The generate_bundle_fusion_filelist is a python script that reads frame metadata and generates a streaming ready frame list file.
generate_bundle_fusion_filelist.py <path to extracted bundle_fusion folder> <desired streaming framerate>
For a single scene, the process works as follow:
wget http://graphics.stanford.edu/projects/bundlefusion/data/apt0/apt0.zip
unzip apt0.zip
Run the following command on the davp folder:
python generate_bundle_fusion_filelist.py ~/data/bundle_fusion/apt0/ "frame-*.color.png" 30 > apt0-frames-color.txt
python generate_bundle_fusion_filelist.py ~/data/bundle_fusion/apt0/ "frame-*.depth.png" 30 > apt0-frames-depth.txt
The full list of datasets is available below:
https://graphics.stanford.edu/projects/bundlefusion/data/apt0/apt0.zip
https://graphics.stanford.edu/projects/bundlefusion/data/apt1/apt1.zip
https://graphics.stanford.edu/projects/bundlefusion/data/apt2/apt2.zip
https://graphics.stanford.edu/projects/bundlefusion/data/copyroom/copyroom.zip
https://graphics.stanford.edu/projects/bundlefusion/data/office0/office0.zip
https://graphics.stanford.edu/projects/bundlefusion/data/office1/office1.zip
https://graphics.stanford.edu/projects/bundlefusion/data/office2/office2.zip
https://graphics.stanford.edu/projects/bundlefusion/data/office3/office3.zip
The generate_ms_rgbd_7s_filelist is a python script that reads frame metadata and generates a streaming ready frame list file.
wget http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/stairs.zip
unzip stairs.zip
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-01/ "frame-*.depth.png" 30 > stairs-seq-01-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-02/ "frame-*.depth.png" 30 > stairs-seq-02-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-03/ "frame-*.depth.png" 30 > stairs-seq-03-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-04/ "frame-*.depth.png" 30 > stairs-seq-04-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-05/ "frame-*.depth.png" 30 > stairs-seq-05-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-06/ "frame-*.depth.png" 30 > stairs-seq-06-frames-depth.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-01/ "frame-*.color.png" 30 > stairs-seq-01-frames-color.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-02/ "frame-*.color.png" 30 > stairs-seq-02-frames-color.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-03/ "frame-*.color.png" 30 > stairs-seq-03-frames-color.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-04/ "frame-*.color.png" 30 > stairs-seq-04-frames-color.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-05/ "frame-*.color.png" 30 > stairs-seq-05-frames-color.txt
python generate_ms_rgbd_7s_filelist.py ~/data/ms_rgbd_7s/stairs/seq-06/ "frame-*.color.png" 30 > stairs-seq-06-frames-color.txt
The full list of datasets is available below:
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/chess.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/fire.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/heads.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/office.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/pumpkin.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/redkitchen.zip
http://download.microsoft.com/download/2/8/5/28564B23-0828-408F-8631-23B1EFF1DAC8/stairs.zip
The generate_nyu_depth_filelist is a python script that reads frame metadata and generates a streaming ready frame list file.
wget http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/basements.zip
unzip basements.zip
This dataset as a slightly different structure: instead of frames being available in pairs (depth, color), they are captured as they come. The script deals with this by choosing the frame pairs that are closer in time, as thus, aligned.
python generate_nyu_depth_filelist.py ~/data/nyc_depth/raw/basements/basement_0001a "r-*.ppm" 30 > basement_0001a_color.txt
python generate_nyu_depth_filelist.py ~/data/nyc_depth/raw/basements/basement_0001a "d-*.pgm" 30 > basement_0001a_depth.txt
The full list of raw datasets is available below (HUGE 428 GB file):
http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_raw.zip
Create videos using multiple presets (h264, h265, ....)
Copy the batch scripts to the folders with the extracted data (bundle_fusion and ms_rgbd) and run them.
Videos will be outputed to a new videos folder