Skip to content
/ LMD Public

Living Memory Dynamics - A novel framework for narrative-generating episodic memory with creative leaps. Features the Joshua R. Thomas Memory Equation.

License

Notifications You must be signed in to change notification settings

mordiaky/LMD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

9 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Living Memory Dynamics (LMD)

A Novel Framework for Narrative-Generating Episodic Memory with Creative Leaps and Language Grounding

PyPI Python 3.9+ PyTorch License Version

What Makes LMD Different?

Traditional memory systems store static embeddings. LMD treats memories as living entities that:

  • Breathe: Memories have metabolic energy (vivid, active, dormant, fading, ghost)
  • Feel: Emotional trajectories, not single valence tags
  • Tell Stories: Narrative phases (setup β†’ conflict β†’ climax β†’ resolution)
  • Resonate: Memories couple and influence each other through resonance fields
  • Create: Generate novel ideas through internal creative leaps

The Joshua R. Thomas Memory Equation

dM/dt = βˆ‡Ο†(N) + Ξ£β±Ό Ξ“α΅’β±Ό R(vα΅’, vβ±Ό) + A(M, ΞΎ) + ΞΊΞ·(t)

Where:

  • βˆ‡Ο†(N) = Narrative potential (story attractor landscape)
  • R(vα΅’, vβ±Ό) = Resonance function (emotional coupling between memories)
  • A(M, ΞΎ) = Activation function (contextual triggering)
  • ΞΊΞ·(t) = Creative noise (generative stochasticity)

Creative Leaps (v1.1.0)

LMD doesn't just storeβ€”it invents. Four internal operators enable human-like creative jumps:

Operator What It Does Example
Analogical Transfer Transplants patterns between distant domains "dragon fire" + "glass refraction" β†’ "prismatic breath weapon"
Manifold Walker Diffuses through embedding space Gradual concept morphing
Orthogonal Composer Gram-Schmidt perpendicular merges Combines concepts along independent axes
Void Extrapolator Ray-traces into unexplored territory Discovers genuinely novel concepts
from lmd import CreativeLeapEngine, LivingMemory

engine = CreativeLeapEngine(content_dim=256)
memories = [LivingMemory.create(embedding) for embedding in my_embeddings]

# Generate creative leaps
leaps = engine.batch_leap(memories, n_leaps=5, dopamine=0.8)
for leap in leaps:
    print(f"{leap.leap_type}: novelty={leap.novelty:.2f}")

Language Grounding (v1.3.0)

The Problem: LMD creates ideas as vectors - you can't read what they mean.

The Solution: Language Grounding bridges vectors and human-readable text.

Text Input --> Embedding --> Creative Leap --> New Embedding --> Text Output
"dragon"   --> [0.2, 0.8..] --> ORTHOGONAL --> [0.5, 0.3..] --> "prismatic creature"

Does LMD work without Language Grounding?

Yes! Language Grounding is 100% optional. Core LMD works fine without it:

  • Core LMD: pip install living-memory-dynamics (vectors only)
  • With Language: pip install living-memory-dynamics[language] (text in/out)

Quick Example

from lmd import create_grounding, CreativeLeapEngine

# Create grounding (downloads MiniLM model ~80MB first time)
grounding = create_grounding(encoder="minilm")

# Encode text to embeddings
dragon = grounding.encode("fire-breathing dragon")
glass = grounding.encode("crystalline glass structure")

# Build a corpus for decoding
grounding.add_to_corpus("fire-breathing dragon")
grounding.add_to_corpus("crystalline glass structure")
grounding.add_to_corpus("stained glass window")
grounding.add_to_corpus("dragon scales armor")

# Blend two concepts
blended = (dragon + glass) / 2
blended = blended / blended.norm()

# Decode back to text
result = grounding.decode(blended, top_k=3)
print(result.interpolated_description)
# Output: "blend of 'crystalline glass structure' (50%) and 'fire-breathing dragon' (50%)"

Generate New Ideas with Text Output

# Create leap engine matching embedding dimension
engine = CreativeLeapEngine(content_dim=grounding.embedding_dim)

# Encode source concepts
sources = [
    grounding.encode("volcanic eruption").cpu(),
    grounding.encode("frozen ice sculpture").cpu(),
    grounding.encode("rainbow spectrum").cpu(),
]

# Generate creative leap
leap = engine.leap(sources, dopamine=0.7)

# Describe what was created
description = grounding.describe_leap(
    leap_type=leap.leap_type.name,
    sources=sources,
    result=leap.embedding,
)
print(description.synthesized_description)
# Output: "Extrapolated beyond 'volcanic eruption' + 'frozen ice' + 'rainbow' into [novel concept]"
print(f"Novelty: {description.novelty_score}")
# Output: "Novelty: 1.0" (completely new!)

Ground Living Memories to Readable Text

from lmd import LivingMemory, ValenceTrajectory, NarrativePhase

# Create a memory from text
embedding = grounding.encode("ancient dragon guarding treasure")
memory = LivingMemory(
    id="memory_0",
    content=embedding,
    energy=0.8,
    valence=ValenceTrajectory(points=torch.tensor([0.5, 0.7, 0.6])),
    phase=NarrativePhase.SETUP,
)

# Later, decode what the memory represents
grounded = grounding.ground_memory(memory)
print(grounded.text)
# Output: "blend of 'ancient dragon guarding treasure' (64%) and 'ancient mythical creature' (36%)"

Run the Full Demo

# Install with language support
pip install living-memory-dynamics[language]

# Run the demo
python -c "from lmd.examples import language_grounding; language_grounding.main()"
# Or clone and run:
git clone https://github.com/mordiaky/LMD.git
cd LMD
pip install -e ".[language]"
python examples/language_grounding.py

Installation

LMD is now available on PyPI! πŸŽ‰

# Core only (vectors, no text)
pip install living-memory-dynamics

# With language grounding (text in/out)
pip install living-memory-dynamics[language]

# With GPU acceleration (Triton CUDA kernels)
pip install living-memory-dynamics[cuda]

# Everything (language + cuda + dev tools)
pip install living-memory-dynamics[all]

PyPI Package: https://pypi.org/project/living-memory-dynamics/

Or install from source:

git clone https://github.com/mordiaky/LMD.git
cd LMD
pip install -e ".[language]"  # or [all] for everything

Quick Start

1. Create Living Memories

import torch
from lmd import LivingMemory, ValenceTrajectory, NarrativePhase

# Memories are born with energy, emotion, and narrative phase
memory = LivingMemory(
    id="memory_001",
    content=torch.randn(256),  # Embedding vector
    energy=1.0,  # Metabolic energy (0-2)
    valence=ValenceTrajectory.from_arc(onset=0.3, peak=0.9, resolution=0.6),
    phase=NarrativePhase.SETUP
)

2. Let Memories Evolve

from lmd import LMDDynamics, LMDConfig

config = LMDConfig(content_dim=256)
dynamics = LMDDynamics(config)

# Step the system forward
for t in range(100):
    dynamics.step(memories, dt=0.01)
    # Memories naturally evolve, couple, and generate narratives

3. Generate Creative Ideas

from lmd import CreativeIdeationEngine, CreativeIdeationConfig

config = CreativeIdeationConfig(content_dim=256)
engine = CreativeIdeationEngine(config)

# Ideate with dopamine modulation
result = engine.ideate(memories, dopamine=0.7, n_ideas=10)

for idea in result.ideas[:5]:
    print(f"Form: {idea.form}, Novelty: {idea.novelty:.2f}, Score: {idea.total_score:.2f}")

4. Hierarchical Ideas with Grafting

from lmd import HierarchicalIdeaFactory, IdeaGrafter

factory = HierarchicalIdeaFactory(content_dim=256)
grafter = IdeaGrafter(content_dim=256)

# Create tree-structured ideas
dragon = factory.from_embedding(dragon_embedding, depth=3)
crystal = factory.from_embedding(crystal_embedding, depth=3)

# Graft components between ideas
result = grafter.swap_component(dragon, crystal.root, target_id="fire_component")
# Result: dragon with crystalline properties

Architecture

lmd/
β”œβ”€β”€ living_memory.py       # Core LivingMemory datastructure
β”œβ”€β”€ dynamics.py            # LMDDynamics engine
β”œβ”€β”€ coupling.py            # Memory resonance fields
β”œβ”€β”€ metabolism.py          # Energy dynamics
β”œβ”€β”€ narrative.py           # Story generation
β”œβ”€β”€ imagination.py         # Mental canvas & transforms
β”œβ”€β”€ plausibility.py        # Reality grounding
β”œβ”€β”€ creative_leaps.py      # 4 creative operators
β”œβ”€β”€ hierarchical_ideas.py  # Tree-structured ideas
β”œβ”€β”€ curiosity_prober.py    # Void exploration
β”œβ”€β”€ creative_ideation.py   # Unified ideation engine
β”œβ”€β”€ language_grounding.py  # Text <-> embedding bridge (v1.3.0)
└── safeguards.py          # Repulsion, anchoring, budgets

Benchmarks

Operation Throughput Memory
Memory Evolution ~10,000 steps/s O(n)
Analogical Transfer ~500 leaps/s O(nΒ²)
Orthogonal Composition ~800 leaps/s O(n)
Void Extrapolation ~600 leaps/s O(n)
Full Ideation Cycle ~50 ideas/s O(nΒ²)

Benchmarked on NVIDIA GeForce RTX 5080 (16GB VRAM), CUDA 13.1, 256-dim embeddings, 100 memories

Key Features

  • No LLM Required: All operations are internal to embedding space
  • Emergent Narratives: Stories arise from memory dynamics
  • Creative Recombination: Generates novel ideas by operating on stored memories (not from nothing)
  • Biologically Inspired: Metabolic states, resonance, narrative arcs
  • GPU Accelerated: Full CUDA support via Triton kernels
  • Thread Safe: Concurrent access supported

Research Paper

See RESEARCH_PAPER_LMD.md for the full technical paper including:

  • Mathematical foundations
  • Algorithm pseudocode
  • Comprehensive benchmarks
  • Comparison with existing systems

Examples

# Run any example
python examples/<example_name>.py
Example Description Requires
basic_usage.py Create and evolve memories Core
creative_leaps.py Generate inventions Core
hierarchical_ideas.py Tree-structured concepts Core
language_grounding.py Text in/out with real output [language]

License

This project uses a custom license that allows free use for research and personal projects while reserving commercial rights. See LICENSE for details.

For commercial licensing inquiries, please contact the author.

Citation

If you use LMD in your research, please cite:

@software{lmd2026,
  author = {Thomas, Joshua R.},
  title = {Living Memory Dynamics: A Novel Framework for Narrative-Generating Episodic Memory},
  year = {2026},
  version = {1.3.0},
  url = {https://github.com/mordiaky/LMD}
}

Contributing

Contributions are welcome! Please read our contributing guidelines before submitting PRs.


Invented by Joshua R. Thomas, January 2026

Contact: mordiaky@gmail.com

Releases

No releases published

Sponsor this project

Packages

No packages published

Languages