A privacy-focused facial authentication system implementing responsible AI principles for secure and ethical biometric verification.
This system provides face-based authentication while prioritizing:
- Privacy and data protection
- Transparency and explainability
- Performance monitoring
- Informed consent
- Ethical considerations
responsible_face_authentication/
│
├── src/
│ ├── __init__.py
│ ├── core/
│ │ ├── __init__.py
│ │ ├── image_processor.py
│ │ ├── face_comparator.py
│ │ └── constants.py
│ ├── security/
│ │ ├── __init__.py
│ │ ├── privacy_manager.py
│ │ └── consent_manager.py
│ ├── monitoring/
│ │ ├── __init__.py
│ │ ├── model_monitor.py
│ │ └── performance_tracker.py
│ └── utils/
│ ├── __init__.py
│ └── helpers.py
├── data/
│ ├── secure_storage/
│ └── monitoring/
├── docs/
│ └── model_card.json
├── tests/
│ ├── __init__.py
│ ├── test_face_comparator.py
│ └── test_privacy_manager.py
├── config/
│ └── settings.py
├── main.py
├── requirements.txt
└── README.md
- Data encryption using
PrivacyManager
- Automated data deletion after retention period
- Explicit consent management
- Secure storage of biometric data
- Encryption of images and sensitive data
- Model performance monitoring via
ModelMonitor
- Drift detection and calibration checks
- Detailed explanation of verification decisions
- Quality checks for facial images
- Bias monitoring across demographics
- Face detection and verification using DeepFace
- Image quality assessment via
ImagePreprocessor
- Multiple face detection backends
- Configurable confidence thresholds
# Core Dependencies
deepface # Face analysis
opencv-python # Image processing
mediapipe # Face detection
numpy # Numerical operations
cryptography # Data encryption
PyYAML # Configuration managementResponsible AI ensures AI systems are:
- Ethical: Respecting privacy and human rights
- Transparent: Explaining decisions and processes
- Accountable: Monitoring and measuring performance
- Fair: Avoiding biases and discrimination
- Privacy Protection
- Encrypted storage of biometric data
- Automatic deletion after retention period
- Explicit consent management
- Minimal data collection
- Transparency
- Detailed explanations of verification decisions
- Model cards documenting system behavior
- Clear documentation of data usage
- Performance Monitoring
- Continuous drift detection
- Quality metrics tracking
- Performance across demographics
- Regular calibration checks
- Security Measures
- Fernet encryption for data
- Secure key management
- Access controls
- Audit logging
System settings in
settings.py
:
{
"face_detection": {
"model": "Facenet",
"detector": "RetinaFace",
"min_confidence": [default]
},
"privacy": {
"retention_days": 30,
"storage_path": "./data/secure_storage",
"encryption_enabled": True
}
}from src.core.face_comparator import compare_photos_with_explanations
from src.security.privacy_manager import PrivacyManager
from src.monitoring.model_monitor import ModelMonitor
# Initialize components
privacy_manager = PrivacyManager('./data/secure_storage')
model_monitor = ModelMonitor('facial_comparison_v1')
# Compare faces with explanations
result = compare_photos_with_explanations(
reference_image_path,
live_image_path,
user_id,
privacy_manager,
model_monitor
)Please read our Contribution Guidelines and code of ethics before submitting pull requests.
Muhit Khan
- LinkedIn: linkedin.com/in/muhit-khan
- Email: muhit.dev@gmail.com
This project is licensed under MIT - see LICENSE file for details.