Nyas is a lightweight and efficient vector database engine designed for similarity search of embeddings. It supports multiple distance metrics (L2, Cosine, Dot), hybrid CPU/GPU execution, and flexible storage backends.
-
“DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node” (NeurIPS 2019) https://proceedings.neurips.cc/paper_files/paper/2019/file/09853c7fb1d3f8ee67a61b6bf4a7f8e6-Paper.pdf
-
“FreshDiskANN: A Fast and Accurate Graph-Based ANN Index for Streaming Similarity Search” (arXiv 2021) https://arxiv.org/abs/2105.09613
These papers influenced Nyas’s design, particularly in indexing structures, graph search, and efficient query traversal.
- Rust (latest stable)
- Protobuf Compiler (for gRPC)
- Docker (optional, for containerized run)
# Start the VectorDB service
cargo run -p vecd# Build the image
docker build -t vecd .
# Run the container
docker run -p 50051:50051 vecdThis example demonstrates connecting to the running vecd service, inserting the SIFT 10k dataset, and calculating recall.
- Ensure
vecdis running (see above). - Download the SIFT 10k dataset into
examples/data/siftsmall:(ftp://ftp.irisa.fr/local/texmex/corpus/siftsmall.tar.gz) (Note: The example expectssiftsmall_base.fvecs,siftsmall_query.fvecs, andsiftsmall_groundtruth.ivecs) - Run the example:
cargo run --bin sift10k_index_grpc --release