An MCP (Model Context Protocol) server that provides AI assistants with control over LM Studio models. This server enables remote model management including listing, loading, and unloading models through the LM Studio API.
- Health Check: Verify connectivity to LM Studio
- List Downloaded Models: View all LLM models available in your LM Studio library
- List Loaded Models: See which models are currently loaded in memory
- Load Models: Load models into memory with configurable parameters
- Unload Models: Remove specific model instances from memory
- Get Model Info: Retrieve detailed information about loaded models
- Node.js 18.0.0 or higher
- LM Studio running with the local server enabled
# Clone the repository
git clone <repository-url>
cd lm-studio-mcp-server
# Install dependencies
npm installThe server connects to LM Studio using environment variables:
| Variable | Default | Description |
|---|---|---|
LMSTUDIO_BASE_URL |
ws://127.0.0.1:1234 |
Full WebSocket URL for LM Studio |
LMSTUDIO_HOST |
127.0.0.1 |
LM Studio host (used if BASE_URL not set) |
LMSTUDIO_PORT |
1234 |
LM Studio port (used if BASE_URL not set) |
Development (uses tsx for TypeScript execution):
npm start
# or with file watching
npm run devProduction (uses compiled JavaScript):
npm run build
npm run start:prodDocker:
# Pull the published image
docker pull portertech/lm-studio-mcp-server:latest
# Run (connects to LM Studio on host machine)
docker run -i --rm portertech/lm-studio-mcp-server:latest
# Run with custom LM Studio host
docker run -i --rm \
-e LMSTUDIO_HOST=192.168.1.100 \
-e LMSTUDIO_PORT=1234 \
portertech/lm-studio-mcp-server:latestAdd to your claude_desktop_config.json:
Using npx (recommended for installed packages):
{
"mcpServers": {
"lmstudio": {
"command": "npx",
"args": ["@portertech/lm-studio-mcp-server"],
"env": {
"LMSTUDIO_HOST": "127.0.0.1",
"LMSTUDIO_PORT": "1234"
}
}
}
}Using local development:
{
"mcpServers": {
"lmstudio": {
"command": "npx",
"args": ["tsx", "/path/to/lm-studio-mcp-server/src/index.ts"],
"env": {
"LMSTUDIO_HOST": "127.0.0.1",
"LMSTUDIO_PORT": "1234"
}
}
}
}Using production build:
{
"mcpServers": {
"lmstudio": {
"command": "node",
"args": ["/path/to/lm-studio-mcp-server/dist/index.js"],
"env": {
"LMSTUDIO_HOST": "127.0.0.1",
"LMSTUDIO_PORT": "1234"
}
}
}
}Using Docker:
{
"mcpServers": {
"lmstudio": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"LMSTUDIO_HOST=127.0.0.1",
"-e",
"LMSTUDIO_PORT=1234",
"portertech/lm-studio-mcp-server:latest"
]
}
}
}Note: For Docker on macOS/Windows connecting to LM Studio on the host machine, use
LMSTUDIO_HOST=host.docker.internal.
All tools return a consistent response envelope:
{
success: boolean;
message: string;
data?: T; // Present on success
error?: { // Present on failure
code: string;
message: string;
};
}| Code | Description |
|---|---|
MODEL_NOT_FOUND |
Requested model does not exist |
MODEL_NOT_LOADED |
Model is not currently loaded |
CONNECTION_FAILED |
Cannot connect to LM Studio |
INVALID_INPUT |
Invalid parameters provided |
LOAD_FAILED |
Failed to load model |
UNLOAD_FAILED |
Failed to unload model |
UNKNOWN |
Unexpected error |
Check connectivity to LM Studio server.
Parameters: None
Returns: Connection status and base URL
List all downloaded LLM models available in LM Studio.
Parameters: None
Returns: Array of model info objects with:
modelKey: Model identifier for loadingpath: Relative path to the modeldisplayName: Human-readable model namesizeBytes: Size in bytesarchitecture: Model architecture (if available)quantization: Quantization type (if available)
List all currently loaded models in memory.
Parameters: None
Returns: Array of loaded model info with:
identifier: Instance identifiermodelKey: Model keypath: Model pathdisplayName: Human-readable namesizeBytes: Size in bytesvision: Whether model supports visiontrainedForToolUse: Whether model was trained for tool use
Load a model into memory.
Parameters:
model(required): Model key to load (e.g.,llama-3.2-3b-instruct)identifier(optional): Custom identifier for the loaded instancecontextLength(optional): Context window size in tokens (minimum: 1)evalBatchSize(optional): Batch size for token processing (minimum: 1)
Returns: Success status with loaded model details (identifier, modelKey, path)
Unload a model from memory.
Parameters:
identifier(required): Identifier of the loaded model to unload
Returns: Success status
Get detailed information about a loaded model.
Parameters:
identifier(required): Identifier of the loaded model
Returns: Model details including identifier, modelKey, path, displayName, sizeBytes, contextLength
# Build the project
npm run build
# Run in development mode with auto-reload
npm run dev
# Type check without emitting
npm run typecheck
# Run tests
npm test
# Lint
npm run lint
# Format
npm run format:check
npm run formatsrc/
├── index.ts # MCP server entry point
├── client.ts # LM Studio client wrapper
├── types.ts # Shared types and result helpers
└── tools/
├── index.ts # Tool exports
├── health-check.ts # Health check tool
├── list-models.ts # List downloaded models
├── list-loaded-models.ts
├── load-model.ts
├── unload-model.ts
└── get-model-info.ts
- Consistent Results: All tools return the same
ToolResult<T>envelope - Safe Wrappers: Tool handlers are wrapped to catch exceptions and return error payloads
- Lazy Config: Environment variables are read at runtime, not module load
- Singleton Client: Single LM Studio client instance is reused
ISC