This is a real-world, end-to-end Data Analytics + Machine Learning project built by Banothu Prashanth to analyze customer behavior and predict churn using RFM segmentation, logistic regression, and a Streamlit dashboard.
β
RFM Segmentation
β
Churn Prediction Model (ROC AUC: 0.999)
β
Interactive Dashboard (Streamlit)
β
Cohort & Visual Analysis
β
Industry-relevant folder structure
β
Production-ready code and deployment
- π Clean raw customer data (
data/raw/) - π§Ή Processed using Pandas, visualized with Matplotlib/Seaborn
- π RFM analysis to segment users (Loyal, At Risk, Churned)
- π€ Logistic Regression model built with Scikit-learn
- π Live Streamlit dashboard to explore predictions
- π§ Stored ML model as
.pklfor deployment
customer_retention_dashboard/ β βββ data/ β βββ raw/ # Raw input data β βββ processed_churn_data.csv # Final RFM dataset β βββ churn_model.pkl # Trained ML model β βββ *.png # Distribution plots β βββ scripts/ β βββ data_cleaning.py β βββ rfm_analysis.py β βββ churn_model.py β βββ cohort_analysis.py β βββ streamlit_app/ β βββ app.py # Streamlit dashboard β βββ requirements.txt βββ .gitignore βββ README.md
- Python (Pandas, NumPy, Scikit-learn)
- Data Visualization: Matplotlib, Seaborn, Altair
- App: Streamlit
- Version Control: Git + GitHub
- Model: Logistic Regression
- ROC AUC Score:
0.99904π₯ - Precision:
0.99+ - Accuracy:
99%
Banothu Prashanth
π§ banothuprashanth121@gmail.com
π GitHub
π LinkedIn: https://www.linkedin.com/in/banothu-prashanth-4406b3233
