Skip to content

End-to-end Customer Retention Analytics Project using RFM segmentation, logistic regression, churn prediction, and Streamlit dashboard. Built for real business use cases.

Notifications You must be signed in to change notification settings

prashanthsword/customer_retention_dashboard

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Customer Retention Dashboard

This is a real-world, end-to-end Data Analytics + Machine Learning project built by Banothu Prashanth to analyze customer behavior and predict churn using RFM segmentation, logistic regression, and a Streamlit dashboard.

Streamlit App Screenshot


πŸ“Š Project Highlights

βœ… RFM Segmentation
βœ… Churn Prediction Model (ROC AUC: 0.999)
βœ… Interactive Dashboard (Streamlit)
βœ… Cohort & Visual Analysis
βœ… Industry-relevant folder structure
βœ… Production-ready code and deployment


πŸš€ Features

  • πŸ“Œ Clean raw customer data (data/raw/)
  • 🧹 Processed using Pandas, visualized with Matplotlib/Seaborn
  • πŸ“ˆ RFM analysis to segment users (Loyal, At Risk, Churned)
  • πŸ€– Logistic Regression model built with Scikit-learn
  • πŸ“Š Live Streamlit dashboard to explore predictions
  • 🧠 Stored ML model as .pkl for deployment

🧱 Folder Structure

customer_retention_dashboard/ β”‚ β”œβ”€β”€ data/ β”‚ β”œβ”€β”€ raw/ # Raw input data β”‚ β”œβ”€β”€ processed_churn_data.csv # Final RFM dataset β”‚ β”œβ”€β”€ churn_model.pkl # Trained ML model β”‚ β”œβ”€β”€ *.png # Distribution plots β”‚ β”œβ”€β”€ scripts/ β”‚ β”œβ”€β”€ data_cleaning.py β”‚ β”œβ”€β”€ rfm_analysis.py β”‚ β”œβ”€β”€ churn_model.py β”‚ β”œβ”€β”€ cohort_analysis.py β”‚ β”œβ”€β”€ streamlit_app/ β”‚ └── app.py # Streamlit dashboard β”‚ β”œβ”€β”€ requirements.txt β”œβ”€β”€ .gitignore β”œβ”€β”€ README.md

πŸ› οΈ Tech Stack

  • Python (Pandas, NumPy, Scikit-learn)
  • Data Visualization: Matplotlib, Seaborn, Altair
  • App: Streamlit
  • Version Control: Git + GitHub

πŸ“ˆ Model Performance

  • Model: Logistic Regression
  • ROC AUC Score: 0.99904 πŸ”₯
  • Precision: 0.99+
  • Accuracy: 99%

🧠 Author

Banothu Prashanth
πŸ“§ banothuprashanth121@gmail.com
🌐 GitHub
πŸ”— LinkedIn: https://www.linkedin.com/in/banothu-prashanth-4406b3233

About

End-to-end Customer Retention Analytics Project using RFM segmentation, logistic regression, churn prediction, and Streamlit dashboard. Built for real business use cases.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages