This project utilizes a smartphone camera and machine learning techniques to analyze and characterize chemical compounds.
Install setup the environment
make install-pixiOpen new terminal to load pixi setup
make install
make shellThe datasets should be downloaded and put to the correct folder and run with 2 steps:
- process: Extract ROI, normalize ROI
- model: Modeling based on the processed data to predict the concentration of the images
# Define base paths
RAW_DATA=./data
OUTDIR=./outdir
KIT="1.1.0"
# Processing images
smartsensor process \
--data "$RAW_DATA" \
--kit $KIT \
--auto-lum \
--outdir "$OUTDIR/processed"
# Modeling 1 degree
smartsensor model \
--data "$OUTDIR/processed" \
--features "meanR,meanG,meanB,modeR,modeG,modeB" \
--skip-feature-selection \
--prefix raw \
--out "$OUTDIR/model/raw" \
--kit $KIT \
--norm "raw" \
--degree 1 \
--replication 100 \
--cv 5 \
--test-size 0.3KIT: v1.0.0 Download Link
Citation: Dang, K.P.T., Nguyen, T.T.G., Cao, T.D., Le, V.D., Dang, C.H., Duy, N.P.H., Phuong, P.T.T., Chi, T.T.K., & Nguyen, T.D. (2024). Biogenic fabrication of a gold nanoparticle sensor for detection of Fe³⁺ ions using a smartphone and machine learning. RSC Advances, 14(29), 20466-20478.
Download Link KIT: v1.1.0 Citation: Under review: Colorimetric detection of ampicillin using gold nanoparticles and aptamer: Portable device and smartphone image-based machine learning.