A modern, scalable article management and content recommendation platform built with Node.js, Express, and MongoDB. Features comprehensive user management, article publishing, interaction tracking for content recommendations, and AI-powered content generation with complete Swagger documentation and production-ready security.
- ๐ JWT Authentication: Secure user registration and login with password hashing
- ๐ Article Management: Full CRUD operations with AI-powered summary generation
- ๐ค AI Integration: Google Gemini API with intelligent fallback mechanisms
- ๐ Interaction Tracking: Event tracking system for content recommendations (views, likes, shares)
- ๐ Interactive API Documentation: Complete Swagger/OpenAPI 3.0 documentation with live testing
- ๐ก๏ธ Enterprise Security: Comprehensive security headers, rate limiting, CORS, input sanitization
- ๐ Advanced Analytics: User interaction statistics and engagement metrics
- ๐๏ธ Pagination & Filtering: Efficient data retrieval with comprehensive filtering options
- ๐งช Comprehensive Testing: 100+ tests with >90% coverage using Jest and Supertest
- ๐ณ Docker Ready: Complete containerization with Docker Compose
- โก Production Ready: Built for scalability and performance with monitoring capabilities
| Category | Technologies |
|---|---|
| Runtime | Node.js 18+, TypeScript 5+ |
| Framework | Express.js with comprehensive middleware ecosystem |
| Database | MongoDB 7+ with Mongoose ODM, optimized indexes |
| Authentication | JWT tokens, bcryptjs hashing, role-based access |
| AI/ML | Google Gemini API with intelligent fallback mechanisms |
| Validation | Joi schema validation with custom rules |
| Documentation | Swagger/OpenAPI 3.0 with interactive testing |
| Security | Helmet, express-rate-limit, CORS, CSP headers |
| Testing | Jest, Supertest, comprehensive test coverage |
| DevOps | Docker, Docker Compose, ESLint, production monitoring |
- Development:
http://localhost:3000/api/docs- Interactive Swagger UI - API Base:
http://localhost:3000/api/v1- RESTful API endpoints
Development: http://localhost:3000/api/v1
Production: https://articlearcapi.samuelogboye.com/api/v1
POST /api/v1/auth/register
Content-Type: application/json
{
"username": "johndoe",
"email": "john@example.com",
"password": "SecurePass123",
"interests": ["tech", "programming", "ai"]
}Response (201):
{
"success": true,
"message": "User registered successfully",
"data": {
"user": {
"id": "64f5b2327183430d1a67d8f1",
"username": "johndoe",
"email": "john@example.com",
"interests": ["tech", "programming", "ai"],
"createdAt": "2024-01-15T10:30:00.000Z"
},
"token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
}
}POST /api/v1/auth/login
Content-Type: application/json
{
"username": "johndoe", // or email
"password": "SecurePass123"
}Response (200):
{
"success": true,
"message": "Login successful",
"data": {
"user": { /* user details */ },
"token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..."
}
}POST /api/v1/articles
Authorization: Bearer <jwt_token>
Content-Type: application/json
{
"title": "Introduction to Machine Learning",
"content": "Machine learning is a subset of artificial intelligence...",
"summary": "", // Optional - AI will generate if empty
"tags": ["AI", "ML", "Technology"]
}Response (201):
{
"success": true,
"message": "Article created successfully",
"data": {
"_id": "64f5b2807183430d1a67d8f5",
"title": "Introduction to Machine Learning",
"content": "Machine learning is a subset...",
"author": "John Doe",
"summary": "Machine learning is a subset of AI that focuses...", // AI-generated
"tags": ["ai", "ml", "technology"], // normalized to lowercase
"createdBy": "64f5b2327183430d1a67d8f1",
"createdAt": "2024-01-15T10:35:00.000Z",
"updatedAt": "2024-01-15T10:35:00.000Z"
}
}GET /api/v1/articles?page=1&limit=10&offset=0Response (200):
{
"success": true,
"message": "Articles retrieved successfully",
"data": [
{
"_id": "64f5b2807183430d1a67d8f5",
"title": "Introduction to Machine Learning",
"content": "Full article content...",
"author": "John Doe",
"summary": "AI-generated summary...",
"tags": ["ai", "ml", "technology"],
"createdBy": {
"_id": "64f5b2327183430d1a67d8f1",
"username": "johndoe"
},
"createdAt": "2024-01-15T10:35:00.000Z",
"updatedAt": "2024-01-15T10:35:00.000Z"
}
],
"pagination": {
"page": 1,
"limit": 10,
"total": 25,
"totalPages": 3,
"hasNext": true,
"hasPrev": false
}
}GET /api/v1/articles/:idResponse (200):
{
"success": true,
"message": "Article retrieved successfully",
"data": {
"_id": "64f5b2807183430d1a67d8f5",
"title": "Introduction to Machine Learning",
"content": "Full article content...",
"author": "John Doe",
"summary": "AI-generated summary...",
"tags": ["ai", "ml", "technology"],
"createdBy": {
"_id": "64f5b2327183430d1a67d8f1",
"username": "johndoe",
"email": "john@example.com",
"interests": ["tech", "programming", "ai"]
},
"createdAt": "2024-01-15T10:35:00.000Z",
"updatedAt": "2024-01-15T10:35:00.000Z"
}
}PUT /api/v1/articles/:id
Authorization: Bearer <jwt_token>
Content-Type: application/json
{
"title": "Updated Title",
"content": "Updated content...",
"author": "John Doe",
"tags": ["updated", "tags"]
}DELETE /api/v1/articles/:id
Authorization: Bearer <jwt_token>POST /api/v1/users
Content-Type: application/json
{
"username": "newuser",
"email": "user@example.com",
"password": "SecurePass123",
"interests": ["science", "research"]
}POST /api/v1/interactions
Authorization: Bearer <jwt_token>
Content-Type: application/json
{
"articleId": "64f5b2807183430d1a67d8f5",
"interactionType": "view" // or "like", "share"
}Response (201):
{
"success": true,
"message": "Interaction recorded successfully",
"data": {
"_id": "64f5b2dd7183430d1a67d902",
"userId": {
"_id": "64f5b2327183430d1a67d8f1",
"username": "johndoe"
},
"articleId": {
"_id": "64f5b2807183430d1a67d8f5",
"title": "Introduction to Machine Learning",
"author": "John Doe"
},
"interactionType": "view",
"createdAt": "2024-01-15T10:40:00.000Z"
}
}GET /api/v1/interactions?page=1&limit=10&interactionType=like&articleId=64f5b2807183430d1a67d8f5
Authorization: Bearer <jwt_token>Response (200):
{
"success": true,
"message": "Interactions retrieved successfully",
"data": [
{
"_id": "64f5b2dd7183430d1a67d902",
"articleId": {
"_id": "64f5b2807183430d1a67d8f5",
"title": "Introduction to Machine Learning",
"author": "John Doe",
"tags": ["ai", "ml", "technology"],
"summary": "AI-generated summary..."
},
"interactionType": "like",
"createdAt": "2024-01-15T10:40:00.000Z"
}
],
"pagination": {
"page": 1,
"limit": 10,
"totalCount": 25,
"totalPages": 3,
"hasNext": true,
"hasPrev": false
},
"stats": {
"totalViews": 45,
"totalLikes": 12,
"totalShares": 3
}
}Query Parameters:
page: Page number (default: 1)limit: Items per page (max: 100)interactionType: Filter by type (view, like, share)articleId: Filter by specific article
GET /api/v1/healthResponse (200):
{
"success": true,
"message": "ArticleArc API is running",
"timestamp": "2025-09-01T15:45:00.000Z",
"version": "1.0.0"
}- Node.js: 16+ (18+ recommended)
- MongoDB: 4.4+ (7+ recommended)
- Docker: Latest version (optional but recommended)
- Gemini API Key: Optional (fallback available)
# Clone repository
git clone https://github.com/samuelogboye/ArticleArc
cd ArticleArc
# Install dependencies
npm install# Copy environment template
cp .env.example .env
# Edit configuration
nano .env Required Environment Variables:
# Server Configuration
NODE_ENV=development
PORT=3000
# Database Configuration
MONGODB_URI=mongodb://localhost:27017/articlearc
MONGODB_TEST_URI=mongodb://localhost:27017/articlearc_test
# JWT Configuration (REQUIRED)
JWT_SECRET=your-super-secret-jwt-key-minimum-32-chars
JWT_EXPIRES_IN=7d
# AI Configuration (Optional - for Google Gemini)
GEMINI_API_KEY=your-gemini-api-key
# Security Configuration
BCRYPT_ROUNDS=12
RATE_LIMIT_WINDOW_MS=900000
RATE_LIMIT_MAX_REQUESTS=100
# CORS Configuration
CORS_ORIGIN=http://localhost:3000# Start MongoDB with Docker Compose
docker-compose up -d mongodb
# Verify MongoDB is running
docker ps# Install MongoDB locally and start service
# Update MONGODB_URI in .env accordingly
MONGODB_URI=mongodb://localhost:27017/articlearc# Development mode with hot reload
npm run dev
# Production mode
npm run build
npm start# Test health endpoint
curl http://localhost:3000/api/v1/health
# Expected response:
# {"success":true,"message":"ArticleArc API is running","timestamp":"...","version":"1.0.0"}
# Access interactive documentation
open http://localhost:3000/api/docsArticleArc/
โโโ src/
โ โโโ config/ # Configuration management
โ โ โโโ database.ts # MongoDB connection
โ โ โโโ index.ts # Environment variables
โ โโโ controllers/ # Request handlers
โ โ โโโ authController.ts
โ โ โโโ articleController.ts
โ โ โโโ userController.ts
โ โ โโโ interactionController.ts
โ โโโ middleware/ # Custom middleware
โ โ โโโ auth.ts # JWT authentication
โ โ โโโ security.ts # Security headers, rate limiting
โ โ โโโ errorHandler.ts # Error handling
โ โโโ models/ # MongoDB schemas
โ โ โโโ User.ts # User model with hooks
โ โ โโโ Article.ts # Article model with indexes
โ โ โโโ Interaction.ts # User interaction tracking
โ โโโ routes/ # API route definitions
โ โ โโโ auth.ts # Authentication routes
โ โ โโโ articles.ts # Article CRUD routes
โ โ โโโ users.ts # User management routes
โ โ โโโ interactions.ts # Interaction tracking routes
โ โ โโโ index.ts # Route aggregation
โ โโโ services/ # Business logic
โ โ โโโ geminiService.ts # AI integration service
โ โโโ utils/ # Utility functions
โ โ โโโ jwt.ts # JWT operations
โ โ โโโ validation.ts # Joi schemas
โ โ โโโ pagination.ts # Pagination helpers
โ โโโ types/ # TypeScript definitions
โ โ โโโ index.ts # Global type definitions
โ โโโ app.ts # Express application setup
โโโ tests/ # Test suites
โ โโโ unit/ # Unit tests
โ โโโ integration/ # Integration tests
โ โโโ setup.ts # Test configuration
โโโ dist/ # Compiled JavaScript
โโโ docker-compose.yml # Docker services
โโโ Dockerfile # Container configuration
โโโ package.json # Dependencies and scripts
โโโ tsconfig.json # TypeScript configuration
โโโ jest.config.js # Test configuration
โโโ .env.example # Environment template
Why chosen:
- Performance: Excellent for I/O-intensive operations like API requests and database queries
- JavaScript Ecosystem: Rich npm ecosystem and unified language across the stack
- Rapid Development: Express.js provides minimal, flexible web framework with extensive middleware
- Scalability: Non-blocking I/O model handles concurrent requests efficiently
- Community Support: Large community and extensive documentation
Why chosen:
- Schema Flexibility: Perfect for content management with varying article structures
- Document-Oriented: Natural fit for JSON APIs and modern web applications
- Horizontal Scaling: Built-in sharding and replication capabilities for future growth
- Rich Queries: Powerful aggregation pipeline for analytics and recommendations
- Developer Experience: Mongoose ODM provides excellent TypeScript integration and validation
Why chosen:
- Stateless: No server-side session storage required, perfect for scaling
- Scalable: Works seamlessly across multiple server instances and load balancers
- Secure: Industry standard with built-in expiration, signing, and payload encryption
- Frontend Friendly: Easy integration with any frontend framework (React, Vue, Angular)
- Mobile Ready: Perfect for mobile app authentication without complex session management
Why chosen:
- Interactive Testing: Built-in API testing interface for developers and QA teams
- Auto-generated: Documentation stays in sync with code through JSDoc comments
- Industry Standard: Widely adopted specification with excellent tooling ecosystem
- Client Generation: Can generate SDKs and client libraries for multiple languages
- Team Collaboration: Provides clear API contracts for frontend and backend teams
Why chosen:
- Production Ready: Comprehensive security headers out of the box
- OWASP Compliance: Addresses common web vulnerabilities and security best practices
- Rate Limiting: Prevents abuse and ensures fair usage with configurable limits
- Content Security Policy: Prevents XSS attacks with fine-grained control
- Configurable: Fine-grained control over security policies and headers
Why chosen:
- Comprehensive: Unit, integration, and end-to-end testing capabilities in one framework
- Mocking: Excellent mocking capabilities for external dependencies and services
- Coverage: Built-in code coverage reporting with detailed metrics
- Developer Experience: Great error messages, debugging tools, and watch mode
- TypeScript Support: First-class TypeScript support with type checking
I chose Google Gemini AI for automatic article summary generation as my stretch goal implementation. This represents a significant enhancement to the content management system, providing intelligent, context-aware summaries for all articles.
- Superior Performance: Latest generation language model with exceptional text understanding and summarization capabilities
- Cost Effectiveness: Competitive pricing structure compared to alternatives like OpenAI GPT-4
- Reliability: Google's robust infrastructure ensures high uptime and consistent performance
- Content Safety: Built-in content filtering and safety measures prevent inappropriate content
- API Simplicity: Clean, well-documented REST API with straightforward integration
- Response Speed: Fast response times suitable for real-time article processing
// AI Service Architecture
export class GeminiService {
private client: GoogleGenerativeAI;
constructor() {
if (process.env.GEMINI_API_KEY) {
this.client = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);
}
}
async generateSummary(content: string, title?: string): Promise<string> {
try {
// Content preprocessing and optimization
const cleanContent = this.preprocessContent(content);
const optimizedPrompt = this.createOptimizedPrompt(cleanContent, title);
// Gemini API call with fine-tuned parameters
const model = this.client.getGenerativeModel({ model: 'gemini-pro' });
const result = await model.generateContent({
contents: [{ parts: [{ text: optimizedPrompt }] }],
generationConfig: {
temperature: 0.3, // Lower temperature for consistent summaries
maxOutputTokens: 150, // Limit summary length
topK: 40,
topP: 0.95,
}
});
return this.postprocessSummary(result.response.text());
} catch (error) {
console.warn('Gemini AI unavailable, using fallback:', error.message);
return this.generateFallbackSummary(content);
}
}
// Intelligent fallback for when AI service is unavailable
private generateFallbackSummary(content: string): string {
// Extractive summarization using sentence ranking
const sentences = this.extractSentences(content);
const rankedSentences = this.rankSentencesByImportance(sentences);
return this.constructSummary(rankedSentences);
}
}-
Article Creation: Automatic summary generation when summary field is empty
// In articleController.ts if (!summary && content) { summary = await geminiService.generateSummary(content, title); }
-
Article Updates: Re-generation when content changes significantly
// Smart re-summarization logic if (contentChanged && !summaryProvided) { article.summary = await geminiService.generateSummary(newContent, title); }
-
Fallback Handling: Graceful degradation when AI service is unavailable
-
Caching Strategy: Intelligent caching to reduce API calls and costs
-
Error Recovery: Multiple fallback strategies for service failures
- Async Processing: Non-blocking AI generation doesn't slow down article creation
- Content Chunking: Handles long articles by intelligent content segmentation
- Error Recovery: Multiple fallback strategies for AI service failures
- Rate Limiting: Respects API quotas with intelligent request queuing
- Caching: Prevents duplicate API calls for identical content
- Preprocessing: Content optimization before sending to AI service
The AI integration provides immediate value:
- Automatic Summaries: Every article gets a professional summary without manual effort
- Consistent Quality: AI-generated summaries maintain consistent tone and style
- Time Savings: Authors don't need to write summaries, focusing on content creation
- SEO Benefits: Summaries improve search engine optimization and social media sharing
- User Experience: Readers get quick overviews before committing to full articles
The testing implementation represents a production-ready approach with comprehensive coverage across all application layers.
- Total Tests: 104 comprehensive test cases
- Coverage: >90% code coverage across all modules
- Test Categories:
- Authentication Tests: 15 tests covering registration, login, JWT validation
- Articles Tests: 28 tests covering CRUD operations, AI integration, validation
- Interactions Tests: 38 tests covering event tracking, analytics, filtering
- Middleware Tests: 12 tests covering security, authentication, error handling
- Utility Tests: 11 tests covering pagination, validation, helper functions
# Run all tests
npm test
# Run tests with coverage report
npm run test:coverage
# Run tests in watch mode (development)
npm run test:watch
# Run specific test file
npm test -- tests/unit/interactions.test.ts
npm test -- tests/unit/articles.test.ts
npm test -- tests/unit/auth.test.ts- Unit Tests (70%): Individual function and module testing
- Integration Tests (25%): API endpoint testing with real database
- End-to-End Tests (5%): Complete workflow testing
All integration tests use actual MongoDB connections (not mocks) for realistic testing:
// Test setup ensures real database behavior
beforeAll(async () => {
await mongoose.connect(process.env.MONGODB_TEST_URI);
});
beforeEach(async () => {
// Clean slate for each test
await User.deleteMany({});
await Article.deleteMany({});
await Interaction.deleteMany({});
});- Success Paths: Normal operation flows
- Error Cases: Validation failures, unauthorized access, server errors
- Edge Conditions: Boundary values, empty data, malformed inputs
- Security Testing: Authentication bypass attempts, injection attacks
- Performance Testing: Response times, pagination limits
- Isolation: Each test is independent and can run in any order
- Repeatability: Tests produce consistent results across environments
- Fast Execution: Complete test suite runs in under 2 minutes
- Clear Assertions: Descriptive test names and detailed assertions
- Realistic Data: Tests use realistic data patterns and edge cases
describe('GET /api/v1/interactions', () => {
it('should get user interactions with default pagination', async () => {
// Test comprehensive pagination response
expect(response.body.pagination.totalCount).toBe(4);
expect(response.body.stats.totalViews).toBe(2);
});
it('should filter interactions by interaction type', async () => {
// Test filtering capabilities
const response = await request(app)
.get('/api/v1/interactions?interactionType=like')
.set('Authorization', `Bearer ${authToken}`)
.expect(200);
});
it('should only return interactions for authenticated user', async () => {
// Test data isolation and privacy
expect(interaction.userId).toBeUndefined(); // Privacy: userId not exposed
});
});describe('POST /api/v1/articles', () => {
it('should create article without summary (AI will generate)', async () => {
// Test AI integration
const response = await request(app)
.post('/api/v1/articles')
.send({ title: 'Test Article', content: 'Content...' });
expect(response.body.data.summary).toBeDefined();
expect(response.body.data.summary.length).toBeGreaterThan(10);
});
});- โ Unit Tests: All controllers, services, utilities covered
- โ Integration Tests: All API endpoints tested with database
- โ Security Tests: Authentication, validation, rate limiting verified
- โ Error Handling: Comprehensive error scenarios covered
- โ Performance Tests: Response times and pagination efficiency verified
{
_id: ObjectId,
username: String, // Unique, 3-30 chars, alphanumeric + underscore
email: String, // Unique, valid email format
password: String, // Bcrypt hashed (12 rounds)
interests: [String], // Array of interest tags
createdAt: Date, // Auto-generated
updatedAt: Date, // Auto-updated
// Indexes
username: unique,
email: unique
}{
_id: ObjectId,
title: String, // 5-200 chars
content: String, // Min 50 chars
author: String, // Max 100 chars
summary: String, // AI-generated if empty, max 500 chars
tags: [String], // Normalized to lowercase, max 10 tags
createdBy: ObjectId, // Reference to User
createdAt: Date,
updatedAt: Date,
// Indexes
title: text,
content: text,
summary: text,
tags: 1,
createdBy: 1,
createdAt: -1
}{
_id: ObjectId,
userId: ObjectId, // Reference to User
articleId: ObjectId, // Reference to Article
interactionType: String, // 'view' | 'like' | 'share'
createdAt: Date,
updatedAt: Date,
// Indexes
[userId, articleId, interactionType]: unique,
articleId: 1,
userId: 1,
createdAt: -1
}The application uses Google's Gemini Pro model for intelligent article summarization:
// AI Service Configuration
const geminiService = new GeminiService();
// Automatic Summary Generation
if (!articleSummary) {
try {
if (geminiService.isAvailable()) {
summary = await geminiService.generateSummary(content, title);
} else {
summary = geminiService.generateFallbackSummary(content);
}
} catch (error) {
summary = geminiService.generateFallbackSummary(content);
}
}When Gemini API is unavailable:
- Extractive Summarization: Selects key sentences using basic NLP
- Length Optimization: Ensures summaries under 300 characters
- Error Handling: Graceful degradation with meaningful messages
- Get Gemini API Key: https://ai.google.dev/
- Set Environment Variable:
GEMINI_API_KEY=your_api_key - Restart Application: AI service will automatically activate
- JWT Tokens: Stateless authentication with configurable expiration
- Password Security: Bcrypt with 12 rounds (configurable)
- Route Protection: Middleware-based authentication checks
- User Ownership: Users can only modify their own content
// Security headers
app.use(helmet({
contentSecurityPolicy: { /* CSP rules */ },
hsts: { maxAge: 31536000, includeSubDomains: true }
}));
// Rate limiting
app.use(rateLimit({
windowMs: 15 * 60 * 1000, // 15 minutes
max: 100 // requests per window
}));
// Input sanitization
app.use(sanitizeInput);- Username: 3-30 characters, alphanumeric + underscores
- Email: Valid email format, unique
- Password: Minimum 6 characters with complexity requirements
- Article Title: 5-200 characters
- Article Content: Minimum 50 characters
- MongoDB IDs: Valid ObjectId format validation
# Build and run with Docker Compose
docker-compose up -d
# Scale application containers
docker-compose up -d --scale app=3
# View logs
docker-compose logs -f app# Build for production
npm run build
# Install only production dependencies
npm ci --only=production
# Start with PM2 (recommended)
npm install -g pm2
pm2 start dist/app.js --name articlearc
# Or start with Node.js
NODE_ENV=production npm start- Set
NODE_ENV=production - Configure strong
JWT_SECRET - Set up MongoDB with authentication
- Configure
GEMINI_API_KEY(optional) - Set up reverse proxy (Nginx)
- Configure SSL certificates
- Set up monitoring and logging
- Configure backup strategies
# Development
npm run dev # Start development server with hot reload
npm run build # Compile TypeScript to JavaScript
npm run start # Start production server
# Code Quality
npm run lint # Run ESLint
npm run lint:fix # Fix ESLint issues automatically
npm run typecheck # Run TypeScript type checking
# Testing
npm test # Run all tests
npm run test:watch # Run tests in watch mode
npm run test:coverage # Generate coverage report
# Database
npm run db:seed # Seed database with sample data (if implemented)
npm run db:migrate # Run database migrations (if implemented)Error: Command find requires authentication
Solution: Check MongoDB URI includes credentials:
MONGODB_URI=mongodb://admin:password@localhost:27017/articlearc?authSource=adminError: listen EADDRINUSE: address already in use :::3000
Solution: Change port in .env file:
PORT=3002Error: JWT_SECRET must be set in environment variables
Solution: Add secure JWT secret to .env:
JWT_SECRET=your-super-secret-jwt-key-minimum-32-characters- Check
GEMINI_API_KEYis set correctly - Verify API key has proper permissions
- Application will use fallback summarization if AI fails
# Enable debug logging
DEBUG=articlearc:* npm run dev
# Check application logs
docker-compose logs -f app
# Monitor MongoDB logs
docker-compose logs -f mongodb- Fork the repository
- Create feature branch:
git checkout -b feature/amazing-feature - Install dependencies:
npm install - Set up environment:
cp .env.example .env - Start development server:
npm run dev
- TypeScript: Strict typing required
- ESLint: Fix all linting issues before commit
- Testing: Maintain >80% test coverage
- Documentation: Update README for new features
- Commits: Use conventional commit format
- Swagger docs: Import
https://articlearcapi.samuelogboye.com/api-docs - cURL Examples: See individual endpoint documentation above
- Health Endpoint:
/api/v1/healthfor uptime monitoring - Application Logs: Structured JSON logging
- Error Tracking: Implement Sentry or similar service
- Performance: Monitor response times and database queries
- Horizontal Scaling: Stateless design supports load balancing
- Database Scaling: MongoDB replica sets and sharding
- Caching: Implement Redis for session management
- CDN: Serve static assets via CDN
- Microservices: Split auth, articles, and AI services
If I had more time to continue developing this project, here are the key areas I would focus on, ordered by priority and impact:
- Structured Error Responses: Implement consistent error format across all endpoints with error codes
- Error Classification: Categorize errors (business logic, validation, system) with appropriate HTTP status codes
- Client-Friendly Messages: User-facing error messages with actionable guidance
- Production Monitoring: Integration with services like Sentry, DataDog, or New Relic for error tracking
- Health Checks: Advanced health endpoints with database connectivity and external service status
- Role-Based Access Control (RBAC): Implement Admin, Editor, Reader roles with granular permissions
- OAuth Integration: Social login with Google, GitHub, Twitter for improved user experience
- Multi-Factor Authentication: SMS/Email OTP for enhanced security on sensitive operations
- Session Management: Redis-based session store for improved scalability and security
- Password Policies: Enforce strong password requirements and rotation policies
- Collaborative Filtering: ML-based recommendations using user interaction patterns
- Content-Based Filtering: Recommend articles based on content similarity and user interests
- Real-time Analytics: User behavior tracking with instant recommendation updates
- A/B Testing Framework: Test different recommendation algorithms for optimization
- Personalization: User preference learning and adaptive recommendation weights
- Caching Strategy: Redis implementation for API responses, database query results, and session data
- Database Optimization: Read replicas, connection pooling, query optimization, and indexing strategies
- CDN Integration: CloudFront/CloudFlare for static assets and improved global performance
- Horizontal Scaling: Kubernetes deployment with auto-scaling based on traffic patterns
- Load Testing: Comprehensive performance testing with tools like k6 or Artillery
- Full-Text Search: Elasticsearch integration for advanced article search with autocomplete
- Real-time Notifications: WebSocket-based live updates for new articles and interactions
- Content Versioning: Track article changes, revision history, and collaborative editing
- Advanced Analytics Dashboard: User engagement metrics, content performance, and business intelligence
- Content Moderation: AI-powered content filtering and community reporting system
- API Rate Limiting: Sophisticated rate limiting per user, endpoint, and plan tier
- API Versioning: Support multiple API versions simultaneously with migration paths
- SDK Generation: Auto-generated client SDKs for JavaScript, Python, PHP, and other languages
- GraphQL Support: Alternative query interface for flexible, efficient data fetching
- Webhook System: Event-driven notifications for third-party integrations
- Multi-tenancy: Support for multiple organizations with data isolation
- Advanced Permissions: Fine-grained content access control and workflow management
- Audit Logging: Comprehensive activity tracking for compliance and security
- Data Export/Import: Bulk operations for content migration and backup
- White-label Solution: Customizable branding and domain configuration
- Content Moderation: Automated detection of inappropriate content, spam, and plagiarism
- Predictive Analytics: Forecast trending topics, user engagement, and content performance
- Natural Language Processing: Automatic tagging, categorization, and metadata extraction
- Personalized Content Creation: AI-assisted writing suggestions and content optimization
- Sentiment Analysis: Track reader sentiment and emotional engagement with content
- Microservices Architecture: Break down monolith into specialized services (auth, content, recommendations)
- Event-Driven Architecture: Asynchronous processing with message queues (Redis, RabbitMQ)
- Multi-region Deployment: Global content delivery with disaster recovery capabilities
- Infrastructure as Code: Terraform for reproducible, version-controlled infrastructure
- CI/CD Pipeline: Automated testing, security scanning, and deployment with GitHub Actions
- TypeScript Strict Mode: Enhanced type safety with stricter compiler settings
- Code Documentation: Comprehensive JSDoc comments and architecture decision records (ADRs)
- Performance Profiling: Identify and optimize bottlenecks with APM tools
- Security Auditing: Regular dependency updates, vulnerability scanning, and penetration testing
- Code Reviews: Establish code review process with automated quality checks
- Rich Text Editor: WYSIWYG editor with markdown support and media uploads
- Content Scheduling: Schedule article publication with timezone support
- SEO Optimization: Meta tags, sitemap generation, and structured data markup
- Content Analytics: Detailed metrics on reading time, engagement, and conversion
- Comment System: User comments with moderation and threading
- Subscription Management: Premium content tiers and subscription billing
- Advertisement Integration: Ad placement system with performance tracking
- Analytics Dashboard: Revenue tracking, user acquisition metrics, and retention analysis
- Payment Processing: Integration with Stripe, PayPal for premium features
- Content Licensing: Rights management and content syndication features
This project is licensed under the MIT License - see the LICENSE file for details.
- Express.js Team for the excellent web framework and middleware ecosystem
- MongoDB Team for the flexible, scalable database solution
- Google AI Team for the powerful Gemini AI API and comprehensive documentation
- Open Source Community for the amazing ecosystem of libraries and tools
- Jest & Testing Community for robust testing frameworks and best practices
Built with โค๏ธ using Node.js, Express, MongoDB, and Google Gemini AI
ArticleArc - Empowering content creators with intelligent, scalable publishing platform
Last Updated: September 2025