Web interface for Monte Carlo modelling of historical datasets with a high level of temporal uncertainty
This tool provides an accessible web interface for running Monte Carlo simulations on historical datasets with temporal uncertainty using the tempun Python package. Users can upload their own datasets, configure simulation parameters, customise visualisations, and download results, including processed data and reproducible Python scripts.
- Upload CSV or Excel files with temporal data
- Configure simulation parameters (temporal range, bin size, number of iterations)
- Customisable visualisation labels
- Download visualisations (PNG format)
- Download processed data with random dates (CSV format)
- Download reproducible Python script with complete metadata and provenance information
- No installation required - runs entirely in the browser
Access the tool at: https://huggingface.co/spaces/petrifiedvoices/tempun
Your input file must contain:
- At least two columns with temporal information (start and end dates)
- Dates formatted as years (YYYY format)
- Years BCE as negative values, CE as positive values
- Column names can be specified in the interface (default:
not_beforeandnot_after)
- Upload a CSV or Excel file containing temporal data
- Select columns containing start dates (not_before) and end dates (not_after)
- Set temporal parameters (start year, end year, bin size)
- Set simulation size (number of random dates per record)
- Customise visualisation labels (optional)
- Click "Run Simulation"
- Download visualisation, processed data, and Python script
This web interface is designed for datasets with up to 5,000 records. For larger datasets, please use the tempun package locally.
- Built with: Gradio
- Core package: tempun by Vojtěch Kaše
- Visualisation: Matplotlib with Calibri font
- Programming language: Python
Petra Heřmánková (Web Interface Developer)
- ORCID: 0000-0002-6349-0540
- Affiliation: Assistant Professor, Aarhus University, Department of History and Classical Studies
- GitHub: @petrifiedvoices
Vojtěch Kaše (tempun Package Author)
- ORCID: 0000-0002-6601-1605
- Affiliation: Aarhus University / University of West Bohemia
- tempun package: https://pypi.org/project/tempun/
Adéla Sobotkova (Contributor)
- ORCID: 0000-0002-4541-3963
- Affiliation: Aarhus University
If you use this tool in your research, please cite both the web interface and the underlying tempun package:
@software{hermankova2025tempun,
author = {Heřmánková, Petra},
title = {Tempun Web Interface},
year = 2025,
publisher = {Zenodo},
doi = {10.5281/zenodo.17788673},
url = {https://doi.org/10.5281/zenodo.17788673}
}
@software{kase2022tempun,
author = {Kaše, Vojtěch},
title = {tempun},
year = 2022,
publisher = {Zenodo},
version = {v0.2.2},
doi = {10.5281/zenodo.8179346},
url = {https://doi.org/10.5281/zenodo.8179346}
}- Heřmánková, P. (2025). Tempun Web Interface [Software]. Zenodo. https://doi.org/10.5281/zenodo.17788673
- Kaše, V. (2022). tempun (Version v0.2.2) [Software]. Zenodo. https://zenodo.org/records/8179346
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Kaše, Vojtěch, Adéla Sobotkova, and Petra Heřmánková. 2023. 'Modeling Temporal Uncertainty in Historical Datasets'. Proceedings of the Computational Humanities Research Conference 2023, 413–25. https://ceur-ws.org/Vol-3558/paper5123.pdf
This tool builds upon the tempun package developed by Vojtěch Kaše.
- Live tool: https://huggingface.co/spaces/petrifiedvoices/tempun
- tempun package: https://pypi.org/project/tempun/
- tempun demo: https://github.com/sdam-au/tempun_demo
- Documentation: https://ceur-ws.org/Vol-3558/paper5123.pdf
Contributions, issues, and feature requests are welcome! Feel free to check the issues page.
If you encounter any issues or have questions:
- Open an issue on GitHub
