The LLM Document Processing System is a MERN + FastAPI based solution for intelligent document query and retrieval. It allows users to upload unstructured documents, ask natural language questions, and receive structured, explainable answers with supporting references.
- Frontend: React.js
- Backend API: Node.js + Express
- AI Microservice: FastAPI (Python)
- Database: MongoDB
- Testing: Postman Mock Server
- AI Models: Embeddings + LLMs
- Upload PDFs, DOCX, and email text
- Extract and embed document text
- Perform semantic search using embeddings
- Return structured responses with clause references
- Store documents & query history in MongoDB
- Interactive and responsive React UI
- Clone the repository
- Install dependencies for backend (
npm install) and frontend (npm install) - Set up
.envwith MongoDB URI and API keys - Start the backend (
npm run dev) and frontend (npm start) - Run FastAPI service (
uvicorn main:app --reload)
POST /upload– Upload a documentPOST /embed– Generate embeddingsPOST /query– Answer user queriesGET /history– Retrieve query/document history
MIT License