Skip to content

sval4/Parallel-Face-Recovery-Recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Parallel-Face-Recovery-Recognition

Parallel Implementation of Nearest Neighbor (image match) algorithm and linear interpolation (occlusion recovery) algorithm; using MPI and CUDA.

How to Run (Ensure access to CUDA, MPI, and clockcycle.h); Can also use run.mk:

  • mpixlc -g face.c -c -o face-mpi.o
  • nvcc -g -G face.cu -c -o face-cuda.o
  • mpicc -g face-mpi.o face-cuda.o -o face-exe -L/usr/local/cuda-11.2/lib64/ -lcudadevrt -lcudart -lstdc++ -lm
  • mpirun --bind-to core --report-bindings -np 1 face-exe 1 1 1024

The first argument chooses which training file for input (1 indicates training file with 1*360 images)

The second argument chooses which testing file for input (1 indicates training file with 1*360 images)

The third argument chooses number of threads per block for CUDA

How to run comments also present in face-serial.c, face-mpi.c, and face.c

Test Cases:

Sequential:

  • Train 1, Test 1
  • Train 2, Test 2
  • Train 4, Test 4
  • Train 8, Test 8
  • Train 16, Test 16

Strong Scaling Study 1 (Train 16, Test 16, No GPU, face-mpi.c):

  • Rank 1
  • Ranks 2
  • Ranks 4
  • Ranks 8
  • Ranks 12
  • Ranks 24
  • Ranks 36

Strong Scaling Study 2 (Train 16, Test 16, 1 GPU):

  • Ranks 1, Blocksize 1
  • Ranks 2, Blocksize 8
  • Ranks 4, Blocksize 16
  • Ranks 8, Blocksize 32
  • Ranks 12, Blocksize 128
  • Ranks 24, Blocksize 512
  • Ranks 36, Blocksize 1024

Weak Scaling Study(Blocksize 1024):

  • 1 GPU/Rank, Train 1, Test 1
  • 2 GPU/Rank, Train 2, Test 2
  • 3 GPU/Rank, Train 3, Test 3
  • 4 GPU/Rank, Train 4, Test 4
  • 5 GPU/Rank, Train 5, Test 5
  • 6 GPU/Rank, Train 6, Test 6

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •