Deep Agentsライブラリのアーキテクチャを活用した、ハーネス構成のRAGシステムです。複数のエージェントが協調動作し、質問の粒度に応じて最適なRAGシステム(Naive RAG / ColBERT RAG)を自動選択します。
-
Updated
Dec 14, 2025 - Python
Deep Agentsライブラリのアーキテクチャを活用した、ハーネス構成のRAGシステムです。複数のエージェントが協調動作し、質問の粒度に応じて最適なRAGシステム(Naive RAG / ColBERT RAG)を自動選択します。
An advanced RAG (Retrieval-Augmented Generation) system using RAPTOR algorithm to hierarchically organize and retrieve lessons from the 2011 Great East Japan Earthquake and Tsunami for educational purposes.
Multimodal RAPTOR for Disaster Documents using ColVBERT & BLIP. Hierarchical retrieval system over 46 tsunami-related PDFs (2378 pages), combining BLIP-based image captioning, ColVBERT embeddings, and GPT-OSS-20b long-context summarization. Optimized for fast multimodal tree construction and disaster knowledge preservation.
Add a description, image, and links to the disaster-knowledge-base topic page so that developers can more easily learn about it.
To associate your repository with the disaster-knowledge-base topic, visit your repo's landing page and select "manage topics."