Skip to content

vttresearch/LatticeReductionAlgorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lattice reduction algorithms

This repository contains a Python-based framework demonstrating how lattice reduction algorithms improve lattice basis quality.

Detailed documentation available at: https://vttresearch.github.io/LatticeReductionAlgorithms/

Project repository is structured as follows:

├── bkz # python modules for lattice reduction algorithms
├── docs
├── LICENSE
├── main.py
├── Makefile
├── mkdocs.yml
├── plotter.py
├── README.md
├── requirements.txt
├── ruff.toml
└── tests

Acknowledgements

The contents of this repository were implemented as part of Combinatorial Optimization with Hybrid Quantum-Classical Algorithms (COHQCA) -project funded by Business Finland. More information on the project website.

License

Copyright © 2025 VTT Technological Research Centre of Finland Ltd. This repository is licensed under the terms and conditions described in LICENSE.

Contact

If you have questions regarding this repository you can contact markus.rautell@vtt.fi

Getting started using Python virtual environment

  1. Install python3-venv
sudo apt install python3-venv
  1. Create virtual environment
python3 -m venv venv
  1. Activate virtual environment
source venv/bin/activate
  1. Install dependencies to your local virtual environment
pip install -r requirementx.txt
  1. Now you're ready to start coding!

Running the application

Run with the default parameters:

python3 main.py

Show the help message:

python3 main.py --help

You can specify parameters using the following arguments:

python3 main.py --lattice_dimension 10 --entry_bound 73 --bkz_version 1 --svp_solver 1 --block_size 5 --precision default --repetitions 5

Running the test suite

You can run the existing tests with the following command

make test

OR manually using

pytest

About

Python-based framework demonstrating how lattice reduction algorithms improve lattice basis quality.

Topics

Resources

License

Stars

Watchers

Forks